o
4 FGQG

UNIVERZA | Fakulteta za gradbenistvo
V LJUBL]JANI | in geodezijo

A ASHIQUL MURSALIN CHY

PARAMETRIC GENERATION OF STANDARDIZED SPACES

PARAMETRICNO GENERIRANJE STANDARDIZIRANIH PROSTOROV

| I i .
B | M A+ European Master in
: Building Information Modelling

Master thesis No.:

Supervisor: President of the Committee
Asist. Prof. Tomo Cerovsek, Ph.D. Prof. Goran Turk, Ph.D.

Ljubljana, 2025

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

ERRATA

Page Line Error Correction

1

v

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. A%
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

BIBLIOGRAFSKO — DOKUMENTACIJSKA STRAN IN IZVLECEK

UDK: 004.42:69.01/.07(043.2)

Avtor: A Ashiqul Mursalin Chy

Mentor: doc. dr. Tomo Cerovsek, Ph.D.

Naslov: Parametri¢no generiranje standardiziranih prostorov

Tip dokumenta: Magistrsko delo

Obseg in oprema: 96 str., 60 sl., 2 pregl, 5 pril.

Klju¢ne besede: Parametricno generiranje, avtomatizacija stanovanjskega nacrtovanja,

skladnost z gradbeno zakonodajo, PyRevit, obdelava naravnega jezika,

BIM
Izvlecek:

Arhitekturni nacrtovanje stanovanjskih objektov je pogosto neucinkovito, ker tradicionalni delotoki
zahtevajo tedne za zasnovo in mesece za razvoj, kar ovira manjS$e investitorje in preobremenjuje
arhitekte s tehni¢nimi nalogami. Magistrska naloga predstavlja sistem za parametricno generiranje
standardiziranih prostorov, ki premosc¢a vrzel med uporabniSkimi nameni in informacijskim
modeliranjem stavb (BIM) z integracijo obdelave naravnega jezika, skladnosti z gradbeno zakonodajo
in neposrednega generiranja modelov BIM. Sistemska arhitektura obsega tri komponente: zunanji
uporabniski vmesnik z interpretacijo naravnega jezika po meri, vtiénik PyRevit in komunikacijski
protokol na osnovi datotek. Implementacija vkljucuje preverjene zahtev gradbene zakonodaje iz desetih
drzav, kar omogoca proaktivno zagotavljanje skladnosti med generiranjem resitev, namesto naknadnega
preverjanja. S parametricnim prilagajanjem na osnovi predlog in algoritmi za porazdelitev povrSin
sistem v nekaj sekundah generira podrobne, s predpisi skladne modele BIM za konfiguracije stanovanj,
kar nadomesc¢a procese, ki so zahtevali tedne. Testiranje je pokazalo uspe$no generiranje raznolikih
konfiguracij od garsonjer do Stirisobnih stanovanj, ob ohranjanju arhitekturne kakovosti in regulativne
skladnosti. Z demokratizacijo dostopa do strokovnih na¢rtovalskih orodij sistem omogoca investitorjem,
strankam in arhitektom, da raziskujejo in generirajo arhitekturne resSitve brez tehni¢nih ovir. Ta
raziskava potrjuje, da lahko vmesniki z naravnim jezikom uspe$no prevedejo ¢lovesko prostorsko
predstavo v kompleksna opravila BIM brez zmanjSanega pomena strokovnih standardov, kar korenito

spreminja nacin zasnove, nacrtovanja in izvedbe standardiziranih stanovanjskih prostorov.

VI

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. vl
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

BIBLIOGRAPHIC- DOKUMENTALISTIC INFORMATION AND ABSTRACT

UDC: 004.42:69.01/.07(043.2)

Author: A Ashiqul Mursalin Chy

Supervisor: Assist. Prof. Tomo Cerovsek, Ph.D.

Title: Parametric Generation of Standardized Spaces

Document type: Master Thesis

Scope and tools: 96p, 60 fig, 2 tab, 5 ann.

Keywords: Parametric Generation, Residential Design Automation, Building Code

Compliance, PyRevit, Natural Language Processing, BIM
Abstract:

The architectural design process for residential developments faces a critical inefficiency where
traditional workflows require weeks for preliminary designs and months for detailed development,
creating barriers for smaller investors and overwhelming architects with repetitive technical tasks. This
thesis presents the Parametric Generation of Standardized Spaces, a comprehensive system that bridges
the gap between user intent and Building Information Modelling (BIM) through the integration of
natural language processing, building code compliance, and direct BIM generation. The system
architecture comprises three interconnected components: an external user interface with custom natural
language interpretation, a PyRevit plugin implementing parametric generation within Autodesk Revit,
and a robust file-based communication protocol. The implementation successfully incorporates verified
building code requirements from ten countries, enabling proactive compliance during generation rather
than post-generation verification. Through template-based parametric adjustment and sophisticated area
distribution algorithms, the system generates fully detailed, code-compliant apartment BIM models
within seconds, replacing processes that traditionally required weeks. Testing demonstrated successful
generation of diverse configurations from studio to four-bedroom layouts, while maintaining
architectural quality and regulatory compliance. By democratizing access to professional-grade design
tools, the system empowers investors, clients, and architects alike to explore and generate architectural
solutions without technical barriers. This research validates that natural language interfaces can
successfully translate human spatial thinking into complex BIM operations without sacrificing
professional standards, fundamentally transforming how standardized residential spaces are conceived,

designed, and delivered.

VIII Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. IX
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

ACKNOWLEDGEMENTS

My deepest gratitude goes first to Allah, whose guidance and blessings enabled me to navigate this

challenging academic journey.

This thesis stands as a testament to the unwavering support of my wife, Masuma Chowdhury, whose

presence has been both my anchor and my sail throughout this endeavor.

I extend my appreciation to my supervisor, Prof. Tomo CEROVSEK, whose mentorship transcended
traditional academic boundaries. His expertise in BIM, coupled with his genuine investment in my
professional development, shaped not only this research but also my understanding of what excellence
in academia truly means. His efforts in facilitating industry connections with architectural and

construction firms proved invaluable in grounding this work in practical reality.

To Masuma, my life partner and intellectual companion, your multifaceted support, spanning financial,
emotional, and academic dimensions, transformed an ambitious dream into a tangible achievement.
Your patience during countless late nights and your insightful feedback on my work have been

instrumental in reaching this milestone.

I honor my parents, whose sacrifices and unconditional love laid the foundation upon which all my

achievements stand. Their belief in education as a transformative force continues to inspire my journey.

I owe a debt of gratitude to Engineer Sangeen Khan, whose mentorship and innovative insights regarding
MCP became a turnaround of this thesis. His guidance helped shape the conceptual framework that

made this parametric generation system possible.

The BIM A+, European Master in Building Information Modelling program deserves special recognition
for providing this transformative educational experience. I particularly acknowledge José¢ Granja, whose
brilliance in BIM opened new horizons in my understanding; Miguel Azenha and Maria Laura Leonardi
for their pedagogical excellence; Bruno Muniz and Bruno Figueiredo for their practical insights; Luka

Gradigar, Prof. Ziga Turk, and Prof. Tomo CEROVSEK for broadening my theoretical perspectives.

My journey was enriched by the camaraderie of exceptional friends: Victor Fernandez de Manzanos,
Sagar Chandra Singha, and Shaieen Kadir, whose friendship provided both intellectual stimulation and
emotional sustenance. I also thank my BIM A+ Colleagues Afonso Ramos Portela, Ahtisham Ali Baig,
Bakht Yaseen, Haris Waheed Bhatti, and Mouadh Khammassi for creating a supportive community that

made this international academic experience truly memorable.

Each person mentioned here contributed uniquely to this achievement, and while this page cannot fully
capture my gratitude, I hope it serves as a lasting acknowledgment of their invaluable roles in my

academic journey.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. XI
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

TABLE OF CONTENTS
ERRATA I
BIBLIOGRAFSKO — DOKUMENTACIJSKA STRAN IN IZVLECEK \%
BIBLIOGRAPHIC- DOKUMENTALISTIC INFORMATION AND ABSTRACTcceueuee VII
ACKNOWLEDGEMENTS IX
TABLE OF CONTENTS XI
INDEX OF FIGURES XVII
INDEX OF TABLES XIX
1 INTRODUCTION 1
1.1 BACKGROUND ...ttt sttt ettt et st st e st sre e enne s 1
1.2 PROBLEM STATEMENTooiiiiiiiitiiinieteseee sttt ettt ettt re s 2
1.3 IMPORTANCE ..ottt ettt ettt sttt sre e 3
1.4 OBJECTIVES ...ttt et st s et st a st sre e 3
1.5 THESIS STRUCTURE........cioiiitiiinttne ettt ettt et e s 4
2 LITERATURE REVIEW 7
2.1 INTRODUCTION ...ttt sttt ettt ettt ettt ettt e s e sanesane e 7
2.2 THE EVOLUTION OF AUTOMATED FLOOR PLAN GENERATIONc..ccocceeiennene 7
2.2.1 FROM CONSTRAINT SATISFACTION TO MACHINE LEARNING........cccccceueeueee. 7
2.2.2 THE PERSISTENT CHALLENGE OF BUILDING CODE COMPLIANCE.................. 9
23 FROM 2D LAYOUTS TO BIM INTEGRATION.......ccceocveriinirienireereneeeeieeeeeeseeeene 10
2.3.1 THE BIM GAP IN ACADEMIC RESEARCHcccccceeiniriiiinieiinieeeneneeenieeeenne 10
2.3.2 COMMERCIAL SOLUTIONS AND THEIR LIMITATIONS........ccceoceninirieneneenns 10
24 INTERFACE PARADIGMS AND USER INTERACTIONcccooviiniiiiiiniciiieeeee, 12
24.1 THE COMPLEXITY BARRIERcccoooiiiiiiiiiieiiccccceet e 12
2.4.2 THE PROMISE OF NATURAL LANGUAGE..........cccccoiiiiiiiiiiinicicccce 13
2.5 THE STATE OF CURRENT PRACTICEccccooiiiiiiiiiiiiieicecieeceeeeceee 14

2.5.1 WHY AUTOMATION HASN'T TRANSFORMED ARCHITECTURE 14

X1 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

2.5.2 THE INTEGRATION CHALLENGE........cccccoititiiinintinintetenitetene et 14
2.6 IDENTIFYING THE RESEARCH GAP....c..cociiiiiiiiiiinteenteeneeeeeseetesie st 15
2.6.1 THE CONVERGENCE OPPORTUNITYccceoviiiiiiiiiiinieieniceeneneeree e 15
2.6.2 TOWARD AN INTEGRATED SOLUTIONcccoviiiiiiiiiiininreneneerene e 16
2.7 CONCLUSION ..ottt ettt sttt st st s sbe st e nnes 16
3 METHODOLOGY 19
3.1 RESEARCH FRAMEWORKoociiiiiiiiiiiinicientctcstet ettt 19
3.2 SYSTEM DEVELOPMENT APPROACHccccoiiiiiiininieineeeseeteeeteesieetene e 20
33 TECHNICAL IMPLEMENTATION STRATEGYooviiiiiiniiienineeicneeeeieeeeeeeeene 22
34 VALIDATION & TESTING METHODc..cociiiiiiiiiiiieieecceeeeetee et 23
3.5 EVALUATION FRAMEWORKccooiiiiiiintiiineeteeee ettt 25
4 PARAMETRIC GENERATION SYSTEM ARCHITECTURE 27
4.1 INTRODUCTION ..ottt sttt ettt sre e ne s e sr e st eae st nnes 27
4.2 SYSTEM OVERVIEWcociiiiiiiiiieinieeeececte ettt sttt 27
4.2.1 HIGH-LEVEL ARCHITECTUREcccciiiiiiiiiiinieenececreeeeereeeere e 27
422 WORKFLOW OVERVIEW.....oiiiiiiititiiiieteeetesee ettt 28
43 EXTERNAL USER INTERFACE APPLICATIONcoooiiiiiiiiiiiiiieieeeneenee e 30
4.3.1 INTERFACE DESIGN & LAYOUT ..ottt 30
4.3.2 NATURAL LANGUAGE PROCESSING ENGINEc.cccocceeiiiniiniiniiniieeeeeeee, 33
433 COMMAND QUEUE MANAGEMENTcocoiiiiiiniinieiieee e 37
4.4 FILE-BASED COMMUNICATION SYSTEM ...cc.cooiiiiiiieiiniiieneneereneeeereeeeee e 39
44.1 COMMUNICATION PROTOCOL STRUCTUREccccceoceiriininiininieienieenieseenns 39
4.4.2 FILE MONITORING SYSTEMcociitiiiiniieiiniinieienteentesieetesie ettt sieeveene 40
443 STATUS UPDATE MECHANISMcooiiiiiiininieiinieenieseeresic ettt 41
4.5 PyREVIT PLUGIN ARCHITECTURE..........cccocoiiiiiiiiiiicicece e 42
4.5.1 PyREVIT PLUGIN INTERFACE.........cccoociiiiiiiiiiiiiiiiiicececee e 43
4.5.2 USER WORKFLOW DEMONSTRATIONcccccoiiiiiiniiiiiiinicieieicienceeesie e 45
4.53 TEMPLATE-BASED DESIGN SYSTEM.......cccioiiiiiiiiiiiniiiiiiiiiciciteeicseieie e 52

4.5.4 BUILDING CODE COMPLIANCE SYSTEM......ccccooivviiniiiiiiiiiiiiiiicicieieiceee 57

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. X1
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.5 PARAMETRIC ROOM GENERATION......cccoctretimimieiiniintenienieetenie st 63
4.5.6 WALL GENERATION FROM LINESccoiiiiiiiiiinintcenecteeeeee e 65
4577 DOOR & WINDOW PLACEMENT SYSTEMcccccceeiniiiiinicienieeenenecreneeeennn 67
4.5.8 SELECTION CYCLE SYSTEM ...ccoioiiiiiieiiniiieeneeesie ettt 70
4.5.9 ROOM PLACEMENT TOOLccocoiiiiiiiiiinieeentseeie ettt 73

4.5.10 INTEGRATION WITH EXTERNAL UI THROUGH THE PROCESS ALL

COMMANDS BUTTON ..ottt ettt st st ne 75

S EVALUATION AND DISCUSSION 79
5.1 INTRODUCTION ..ottt ettt ettt sttt et saneeneeneens 79
5.2 TEST CASES AND RESULTS ...ttt 79
5.2.1 TEST CASE DESIGN.....coititiiiiiteniertenesi ettt ettt st sttt ettt saeeae 79
5.2.2 GENERATION PERFORMANCE RESULTS......cccoctiiiiinieienenteneeeeeneeee e 79
5.2.3 NATURAL LANGUAGE PROCESSING ACCURACYcocoevivviininicienieeneneenens 80
524 USER WORKFLOW VALIDATION......cccecteiiiiiiinirteneneeenteeeete et 80
53 COMPARATIVE ANALYSIS WITH EXISTING TOOLSccccociiiiiiiiiiineeereeeenen 81
53.1 COMPARISON FRAMEWORKccceocimiiiiiiinieienteteieseetente ettt e 81
5.3.2 ANALYSIS AGAINST ACADEMIC SOLUTIONScccooiieiininieinieiineerenreneenens 81
5.3.3 ANALYSIS AGAINST COMMERCIAL TOOLSccocceoiiiiiiieieeeneereeeeeeieeeene 82
5.3.4 UNIQUE ADVANTAGES IDENTIFIEDccccooiiiiiiiiiniinieciieeeeeeesee e 82
54 SWOT ANALYSIS L.ttt ettt sttt et sbe e st et ereens 82
54.1 STRENGTHS ..ottt ettt st st et ene e 82
542 WEAKNESSESottt sttt sttt e 83
543 OPPORTUNITIES ...ttt sttt st st et ne 84
544 THREATS ..ottt ettt ettt s b e st ea st eane st saeenne 84
5.5 DISCUSSION OF FINDINGSooouteiiiieienttntententetenre et sieeee st eeeetesreenesreeeeeneseeeneenne 85
5.5.1 ACHIEVEMENTS OF RESEARCH OBJECTIVES.......ccccoccevininiininienineeeneneenens 85
5.5.2 IMPLICATIONS OF ARCHITECTURAL PRACTICEccccooiiiiiiiiiiiniiiiiinicns 86
5.5.3 BUILDING CODE INTEGRATION IMPACTccccooviiiiiiiiiniiiiiinicicieeeeneceenn 86

5.6 LIMITATIONS ..ottt 87

X1V Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

5.6.1 CURRENT SYSTEM LIMITATIONS ...c..ooiiiiniriiinieene ettt 87
5.6.2 METHODOLOGICAL LIMITATIONScceootiiiriiinteieneetenit ettt 87

6 CONCLUSION 89
6.1 SUMMARY OF RESEARCH FINDINGS.......ccccooiiiiiiniieiiieeeneceeieeeereseeeesre e &9
6.2 ACHIEVING THE RESEARCH OBJECTIVEScccooiiiiiiiniiiniiceeceeeeeeese e &9
6.2.1 INTERFACE ACCESSIBILITY OBJECTIVES ..ot &9
6.2.2 TECHNICAL IMPLEMENTATION OBJECTIVES.....cccoiiiiiiieiinirenceceeeeeene &9
6.2.3 COMPLIANCE AND VALIDATION OBJECTIVESccociiiiiiiiiiinireneeecceeeene 90

6.3 CRITICAL ASSESSMENT OF ACHIEVEMENTS.ccceoiiiiiiiiininieneeeeeeeeeeeene 90
6.4 LIMITATIONS ...ttt ettt ettt st sttt et e sae e st eneeneens 91
6.5 CONTRIBUTIONS TO KNOWLEDGE.......cccccoiiiiiiiiiiiinieecceceeeeeieese e 91
6.5.1 ACADEMIC CONTRIBUTIONSc..cootiotiiiiinirenteneerese ettt 91
6.5.2 PRACTICAL CONTRIBUTIONSccciiiiiiiireeneeeeectert e 91

6.6 FUTURE RESEARCH DIRECTIONS.......cciiiiiiieiiineeneneceenre e 92
6.6.1 MULTI-STORY BUILDING GENERATIONccccccerviiiinieiininieneneeeenreeeereeeeeene 92
6.6.2 PLATFORM INDEPENDENCE THROUGH IFC STANDARDScccccooviiniiniinnnn 92
6.6.3 LARGE LANGUAGE MODEL INTEGRATION........cocctiiiiniiniinieeieeieeeeeeeeeeee e 93
6.64 AUTOMATED BUILDING CODE EXPANSIONccccceiiiiniiniinienieeieeeeneeneeeeeene 93
6.6.5 SITE-CONSTRAINED GENERATION......ccccoiiiiiiiiiiiiiieeeeeeneceeeeeieceeee e 93
6.6.6 DYNAMIC TEMPLATE EVOLUTIONccccoiiiiiiiiiiiiieeeneeeeeeeeee e 93
6.6.7 ADDITIONAL RESEARCH PRIORITIESccccccceiimiiiinineeiineeieneeeenreeeere e 93

6.7 FINAL REMARKS ...ttt ettt et et 94
REFERENCES 95
APPENDICES 101
APPENDIX A: BUILDING CODE REQUIREMENTS COMPARISONcccccooeiniinienienncnnn 101
MINIMUM ROOM AREA REQUIREMENTS (IN?)ooiiiiiiiiiiiieiiiiieieieieeeeeeeeeeeae 101
ADDITIONAL SPATIAL REQUIREMENTSccciiiiiiiiiiiiiiiceeeeeee e 101
APPENDIX B: AREA DISTRIBUTION ALGORITHM........cccoocviiiiiiiiiniiiiiiiiicicicceee, 101

APPENDIX C: PyREVIT COMMAND DIALOGUES........ccccioiiiiiiiiiiniiiciccececeee 102

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. XV
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

C1: PROCESS ALL COMMANDS DIALOGUE DURING MASTER MODELLING............ 102
C2: DOOR PLACEMENT DIALOGUEc.cociiiiiiiniiniiiintieteesieeesteseete ettt 105
C3: WINDOW PLACEMENT DIALOGUEc..ccceoiiiiiiiiieiincenceese e 106
C4: CORRECTIONS COMMAND DIALOGUEc..cociooiiiiiiiiiiieieneceeeseceeeeeeese e 106
APPENDIX D: CODE SNIPPETS ..ottt 108
D1: NATURAL LANGUAGE PROCESSING ENGINEccccccooiiiiiiiiiinecececceeene, 108
D2: BUILDING CODE COMPLIANCE SYSTEMcoctiiiiiiiininieienieeeeeneeenie st 110
D3: PYREVIT PLUGIN COMMAND ORCHESTRATIONccccceoviiniiniiniiiieeecneeneeeeeee 111

APPENDIX E: MODEL GENERATIONS ..ottt 114

XVI Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. XVII
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

INDEX OF FIGURES

Figure 1: Floor plan with Optimized Grid, SOUICe: [6]......ccceiiiriiiiiiiiieiierieee et 8
Figure 2: Graph-Aided Design and Generation, SOUICE: [4].......cceerierierienienieeieee et 8
Figure 3: House-GAN, Graph-based house layout generator, SOurce: [7].....ccccoeeeereereeneenienieeiieenienns 9
Figure 4: Generated multi-story layouts, Source: [11].....ccccoeiiiriiiiiiiiiieeeeeee e 10
Figure 5: Testfit, SOUICE: [12] ..uiiimiiiiieiee ettt ettt ettt et et e bt e saeas 11
Figure 6: Skema.ai, SOUICE: [13] . .ii ittt ettt et sbee e 11
Figure 7: Procedural Generation, SOUICE: [9]eoiuiiiiiiiieiieieeiete ettt 13
Figure 8: RFP-A Evolution metrics structure diagram, Source: [19].......cccoceiiiiniiniiiniiniiieeieeeee, 15
Figure 9: Methodological Framework for Parametric Generation System Development..................... 20
Figure 10: Complete Parametric Generation Workflowccccocvvevieniiiiciieciieiieieccceece e 29
Figure 11: External User Interface Design & Layoutcccevvevierieeciesciieiicieeeereeesee e sneesreeseeens 30
Figure 12: Multiple Input Options for External Ulc.ccocveviierieiieniieieie e 33
Figure 13: Command QUEUE JSON SHIUCIUIEcc.cevuierierieeiiesieesiiesiesresreereesseeseesseesssesssesseessessseens 35
Figure 14: Command Queue in the External Ul...........ccccoiiviiiiiinieiiecie e 37
Figure 15: Command QUEUE SerialiZationcccuevierveeieeiieesieeriesiesresreereeseesseesssesssesssesssesssessseens 38
Figure 16: Communication Protocol JSON StrUCtUIE.........cccvieriieriierieeieeriereereereesieeseesereseneesreeseeens 39
Figure 17: Ribbon Interface of Parametric BIM Generation using PyRevit..........cccocvevvvvvciiniiiiniennenn, 43
Figure 18: Ribbon Interface of Parametric BIM Generation using PyRevit..........ccccocveveviviiiiiiineennenn, 45
Figure 19: Example Template consisting 2d lines with Global Parameters...........c.ccocceverereenineenene. 45
Figure 20: Building Code Options t0 SEIECccuiriiriiririeriirieeieneeteeee et 46
Figure 21: Total Apartment Area SElECtiOnc..coeeviiriiiiiriiiieneeteeeeeee e 46
Figure 22: Automatic Adjustment 0f ROOM SIZEScceeciieiiiiniiniiiieeieee et 46
Figure 23: Selection of Wall Familyccocooiiiiiiiiiiitete e 47
Figure 24: Selection of Wall HEIGhtcoooiiiiiiiiiiiee et 47
Figure 25: Generated BIM Model- Plan VIewccccoiiiiiiiiniiniiiiiieeeeee et 48
Figure 26: Generated BIM Model- PErspective VIEWcoceveeviiriirieniinieienieeienie et 49
Figure 27: Selection of Door Family.........cccooieiiiiiiiiieiieieeeeeeee et 49
Figure 28: Door placement in the BIM modelc.covioiiiiiiiiiiiiiiicieceeeeeecee e 50
Figure 29: Window Placement in the BIM Model.........c..cocoeviiiiiiiniiiiiiiiceceeeecee e 50
Figure 30: ROOM PIACEIMENLeeivviiiiieiieieecieeeie et cirecere vt et e e teesteestbeesbeesbeebeesteesasesssesesessseesseesseenas 51
Figure 31: Element selection cycle for modification pUrpoSescccueevveevieerieenieesreeieereereeveesenenenes 52
Figure 32: Template Naming CONVENTIONccverureeieereereerieeseesreeseeseesseesseesseessessseesesssesssesssssssnes 53
Figure 33: Template Selection AlOTIthM........cccoeiiiiiiiiiieiieieee e 56
Figure 34: Building Code JSON StrUCtUIe.......ccveciiiiiirierieieerieeseeete e esreereesteesereesvesereesseesvaessnesenas 59

Figure 35: Building Code Cultural REQUITEMENtS.........ccueeieiiireieierieeierie e 60

XVIII

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.

Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:

Compliance Report GENEIatioN..........cccveeeeuiieriieeiieeeieeecteeeeteeereeeiteeebeeetaeesabeeeseeesaseesanes 62
Room Type Mapping for Building Codes.........ccoceeiiiiiiiiiiiiiiieeceeeeeeenee e 63
Area Distribution AIOTTtRMcoiiiiiiiieie et 64
Line Collection for Wall GEeNneration.............cccceerierierieinieeieesie ettt et 65
Wall Creation Implementation............ccceiieeiieiiiieiiieceieeeieeetee e e eiee e e b e eeveeseveeeeneees 66
D00r Marker DEtECHIONeeuiiiieiieeiie ettt ettt ettt ettt sb e s bt e st saeeeteens 68
Wall Association AIGOTItRIMc.eiiiiiiiiie et 69
Element SOTtING SrAt@Yccvervierieiieiiieieerieeseertestesreebeestesseesseesssesssessseessaesseesseessseanns 71
Element selection cycle for modification PurpOSESc..ccveeveereereeririieeieeseeseeseeesneeens 71
Label-Based Element ReSOIULIONcciiuiiiiiiirieiieiieeecee et 72
Flip Operation Implementation...........c..ccvecrierierieeieesreeieeseeseesresreereeseesseesssesssessessseens 72
Room Boundary DEteCtioN........ccvecieriieiieiieriiesieireeteeteesteesieeseaeseressseesseesseesseesssesssessseens 74
Room DIimension MatChingccceecvieeiieiiierieiiecie ettt e see e sreeere e esseesseesesesssaesseens 74
ROOM TaG CIEatION......ccvieiieiieiieeieeteeteereesieesteeseesebeesbeeseesseesssessseasseesseesseesssessseessesssenns 75
Command File Path ReSOIULIONcceoiiiiiiiiiiiiieie e 76
Command State ManagemeNt...........cc.eeeveerueerieerieriesireecreeseesseesseesseessessessseesseessessssesssennns 76
Dynamic Script EXECULIONc..eevuiiiiiiiiieiieiietesite sttt ettt ettt 77
One Bedroom Model, Generated using External Ul............ccoccooiiiiiiiiinininieiieeeees 114
One Bedroom Model, Placed Doors and WINAOWSccovvevueiiiiiiiiiiiiiieeeeeeeeeeeieneee 114
One Bedroom Model, Before COrreCtionsueeeeeueeieeeieeeeeeieeeeeeieee e 115
One Bedroom Mode, After COITECIONeeeeeiuveieeeceieeeeeieee e 115
One Bedroom Mode, After COITECIONeeeeiuvvieeeiiieeceeieee e e 115
Four Bedroom Model, Generated using External Ul.........c..coceviniiiiinininnininenineeenn 116
Four Bedroom Model, Placed Doors and Windowsccccceeeeeveiieeiieeeeeiiieeeeeieee e 116

Four Bedroom Model, After COITeCtioNS.cccvuviieeeireeeeiireeeeeereeeeeeree e e e e 117

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. XIX
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

INDEX OF TABLES

Table 1: Minimum room area requirements as specified in each country's building regulations 101

Table 2: Additional dimensional and spatial requirements for residential...........c..cccceevvieecrirennennnne. 101

XX Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 1
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

1 INTRODUCTION

1.1 BACKGROUND

The architectural design process stands at a critical juncture where traditional methodologies
increasingly struggle to meet the accelerating demands of modern construction and real estate
development. In contemporary practice, the journey from initial concept to constructible Building
Information Model (BIM) typically spans weeks or months. This process involves multiple iterations

between architects, clients, and regulatory authorities.

The extended timeline inflates project costs and creates significant barriers for smaller investors and
developers. These stakeholders often cannot afford lengthy design exploration phases. The emergence
of Building Information Modelling as the industry standard has paradoxically both enhanced and
complicated this process. BIM enables unprecedented coordination and documentation accuracy.
However, it has also introduced layers of technical complexity that require specialized expertise to

navigate effectively.

The parametric design paradigm offers a solution to these challenges. It encodes design logic into
adjustable rule sets that can generate multiple variations from a single framework. Yet, existing
parametric tools remain largely inaccessible to non-specialists. Users typically require either
programming knowledge or extensive training in visual scripting environments. This technical barrier
has confined parametric design to specialized applications despite its potential to democratize

architectural exploration.

The integration of building code compliance, a fundamental requirement for any constructible design,
remains predominantly manual. This creates a disconnect between generative capabilities and regulatory
requirements. The efficiency gains promised by automation are thus undermined. Recent advances in
natural language processing and user interface design have created unprecedented opportunities to
bridge the gap between human intent and computational execution. The ability to translate
conversational specifications into precise parametric operations represents a paradigm shift in how users

might interact with complex design systems.

This thesis explores the development of a comprehensive system that leverages these advances. The
system creates an accessible, code-compliant parametric generation tool specifically tailored for
standardized residential spaces. By focusing on apartment design, a domain characterized by well-
established patterns yet requiring careful customization, this research demonstrates how intelligent
automation can transform architectural workflow without sacrificing design quality or regulatory

compliance.

2 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

1.2 PROBLEM STATEMENT

The current architectural design process for residential developments presents an inefficiency that
affects all stakeholders in the construction value chain. Investors and developers seeking to evaluate
potential projects must first engage architectural firms to produce preliminary designs. This process

typically requires 2-4 weeks for initial concepts and an additional 4-8 weeks for detailed development.

[].

The high upfront cost of architectural services prevents many smaller investors from exploring multiple
design options or sites. Preliminary studies often range from €5,000 to €20,000 [1]. This effectively
limits market participation to well-capitalized entities. The sequential nature of traditional design
development compounds this issue. Fundamental problems, such as building code violations or site
constraints, are often discovered late in the process. These discoveries necessitate costly revisions that

further extend timelines

For architectural firms, the current workflow creates its own set of challenges. Junior architects spend
countless hours on repetitive tasks. These include adjusting room dimensions to meet area requirements,
verifying code compliance, and producing documentation for similar apartment typologies. This
inefficient use of human expertise not only increases project costs but also contributes to professional

burnout and limits time available for creative design exploration.

The manual nature of code compliance checking is particularly problematic [2]. Architects must cross-
reference dozens of requirements across multiple documents. This process is prone to human error.
Errors can result in expensive corrections during construction or regulatory rejection of completed

designs.

The integration challenges between design ideation and BIM production compound these inefficiencies.
Even when architects use sophisticated tools like Revit, the translation from conceptual design to a
detailed BIM model requires extensive manual work. Each wall must be drawn. Every door and window
must be placed. All rooms must be defined and tagged. While necessary for documentation, these tasks

add little creative value.

The lack of intelligent automation means that minor changes can trigger hours of manual modifications.
Adjusting an apartment's total area or switching between building codes exemplifies this problem.
Technical debt accumulates throughout the project lifecycle. Design iterations become increasingly
expensive. This discourages exploration of alternatives that might better serve client needs or site

opportunities.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 3
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

1.3 IMPORTANCE

The significance of this research extends beyond efficiency gains. By automating the generation of code-
compliant apartment layouts, this system democratizes access to professional-grade architectural tools.
Smaller investors and community developers can now explore design options that were previously cost-

prohibitive.

This democratization is particularly important in addressing the global housing crisis. The speed and
cost of design development often determine whether affordable housing projects achieve financial
viability. The ability to generate multiple compliant options within minutes rather than weeks
fundamentally changes the economics of residential development [1]. This could unlock sites and

opportunities that current processes render unfeasible.

From an architectural practice perspective, this work represents a crucial evolution in how computational
tools augment rather than replace human creativity. By automating repetitive technical tasks, dimension
calculations, code compliance verification, and BIM model generation, the system liberates architects
to focus on their core competencies. These include solving complex spatial problems, creating
meaningful spaces, and responding to unique site conditions. This shift from manual drafting to design

orchestration aligns with the profession's trajectory toward strategic, value-added services.

The integration of building code intelligence directly into the generation process represents a paradigm
shift in regulatory compliance. This benefits all stakeholders in distinct ways. Developers gain
confidence that generated designs will meet regulatory requirements, reducing the risk of costly
surprises during permitting. Architects eliminate tedious manual verification processes while reducing
professional liability exposure. Regulatory authorities could eventually enable faster permit review and

approval processes through standardized compliance checking.

The system's support for multiple international building codes demonstrates the feasibility of creating
globally applicable tools that respect local regulations. This capability is critical as architectural practice
increasingly operates across borders. The research contributes not only to immediate productivity
improvements but also to the longer-term transformation of how the built environment is conceived,

designed, and delivered.

14 OBJECTIVES

This thesis aims to develop and validate a comprehensive parametric generation system. This bridges
the gap between user intent and building code-compliant BIM models. It specifically targets the
automation of standardized residential spaces. The system addresses critical gaps identified in existing

solutions through an integrated approach. This approach combines natural language processing, building

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.

Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

code intelligence, and direct BIM generation within a unified workflow. The workflow maintains both

accessibility for non-specialists and precision for professional practice.

The research objectives are organized into the following thematic areas:

i

ii.

iii.

iv.

1.5

Interface and Accessibility:

Ol.1: Design and implement a natural language interface that accurately interprets

architectural requirements without requiring specialized technical knowledge

O1.2: Develop a sophisticated post-generation modification system through natural

language commands for iterative design refinement

0O1.3: Demonstrate the system's accessibility to non-expert users while maintaining the

precision required by professional architects

Technical Implementation:

02.1: Create a template-based parametric engine that generates fully detailed apartment

BIM models directly in Revit

02.2: Establish a reliable file-based communication protocol between the external user

interface and Revit plugin

02.3: Implement intelligent area distribution algorithms that automatically balance room

dimensions

Compliance & Validation:

03.1: Develop a building code compliance system that automatically validates and adjusts
designs according to regulations from ten different countries

03.2: Validate the system's effectiveness through the successful generation of multiple
apartment configurations across different building codes

03.3: Evaluate time savings and workflow improvements compared to traditional manual

processes

Foundation for Future Development:

O4.1: Establish a foundation for future expansion to other building typologies and more

complex architectural programs beyond standardized residential spaces

THESIS STRUCTURE

Chapter 01: Introduction establishes the research context and critical need for automated, code-

compliant design generation in contemporary architectural practice. It articulates specific problems

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 5
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

faced by investors, developers, and architects in current workflows. The chapter demonstrates how these

challenges limit both market participation and design exploration.

Chapter 02: Literature Review examines the evolution of automated floor plan generation from early
constraint-based approaches through current machine learning systems. Both academic research and
commercial solutions are analyzed to identify five critical gaps preventing professional adoption. The
review establishes the theoretical foundation while demonstrating the persistent disconnect between

algorithmic achievements and practical requirements.

Chapter 03: Methodology presents the research framework and development approach used to create
the parametric generation system. It details the problem decomposition strategy, system development
methodology, and technical implementation decisions. The chapter also describes validation methods

and the evaluation framework used to assess system effectiveness.

Chapter 04: Parametric Generation System Architecture provides an in-depth technical exposition
of how user requirements are transformed into code-compliant BIM models. It describes the three
primary components, external user interface, PyRevit plugin, and file-based communication layer- and
their intricate interactions. The chapter demonstrates how various capabilities integrate to create a

cohesive workflow bridging accessibility and professional utility.

Chapter 05: Evaluation and Discussion provides a comprehensive assessment of the developed
system through test cases, comparative analysis, and strategic evaluation. The chapter examines system
performance, compares it with existing solutions, and presents a SWOT analysis. It concludes with a

discussion of findings and an acknowledgment of limitations.

Chapter 05: Conclusion synthesizes the research achievements and addresses how the developed
system fulfills the stated objectives. It evaluates practical implications for architectural practice and
acknowledges current limitations. The chapter maps pathways for future development and demonstrates
that natural language interfaces can successfully bridge the gap between human design intent and

complex BIM operations.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 7
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

2 LITERATURE REVIEW
2.1 INTRODUCTION

The architectural design process has undergone a significant transformation with the advent of
computational design methods and Building Information Modelling (BIM) technologies. Yet, despite
decades of research into automated floor plan generation, a fundamental disconnect persists between
theoretical algorithmic achievements and the practical requirements of architectural practice. This
literature review examines the evolution of automated floor plan generation systems, analyzing both
academic contributions and commercial solutions to identify the critical gaps that prevent widespread
adoption in professional practice. Through this analysis, we establish the foundation for understanding
how the integration of natural language interfaces, building code compliance, and direct BIM generation,

as implemented in our proposed system, addresses these long-standing challenges.

The automation of architectural design presents unique challenges that distinguish it from other domains
of computer-aided design. Unlike mechanical or industrial design, where components follow strict
engineering constraints, architectural spaces must satisfy a complex web of requirements: building codes
that vary by jurisdiction, cultural preferences that influence spatial arrangements, site-specific
constraints that shape building form, and the ineffable qualities that make spaces liveable and

meaningful [3].
2.2 THE EVOLUTION OF AUTOMATED FLOOR PLAN GENERATION
2.2.1 FROM CONSTRAINT SATISFACTION TO MACHINE LEARNING

The journey toward automated floor plan generation began with constraint-based approaches that treated
spatial layout as an optimization problem. Early research established the computational complexity of
floor plan generation, demonstrating that even simplified versions of the problem were NP-hard
(nondeterministic polynomial time-hard) [4]. These foundational works introduced constraint
satisfaction as a fundamental paradigm, where rooms were allocated to satisfy dimensional

requirements, adjacency relationships, and geometric constraints.[5]

The hybrid approach developed by HABX represents a significant advancement in this tradition,
combining constraint programming with genetic optimization to generate apartment layouts within
arbitrary polygonal envelopes [6]. Their Optimizer algorithm discretizes floor space into a grid, reducing
the complex continuous problem to a discrete cell assignment task. (Figure 1) This discretization enables
the system to generate architecturally valid floor plans within approximately one minute—a remarkable
achievement in computational efficiency. However, the reliance on grid-based representation introduces
limitations: the resulting layouts, while functionally valid, often lack the nuanced spatial qualities that

emerge from human design intuition.

8 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Figure 1: Floor plan with Optimized Grid, Source: [6]

Graph-based representations have emerged as an alternative approach that better preserves topological
relationships during generation. The Graph-Aided Design and Generation (GADG) system demonstrates
that dual graph representations can maintain room adjacencies while allowing rapid customization [4].
By deriving a dual graph from existing floor plans and applying transformation rules (Figure 2), GADG
generates highly customized layouts in milliseconds. This speed is impressive, yet the system's
limitation to rectangular rooms and single-floor configurations reveals the persistent challenge of

balancing computational efficiency with architectural complexity.

(a) Sample floor plan

[| Living Room

I Kitchen
L ;
1

Hallway, Bedroom 2

Dining

Bedroom 1
r Bath

y

(b) Adjacency graph
of the selected floor

plan Living Kitchen Living Kitchen
Dining Dining
Hallway e Hallway
Bedroom 1 Bath Bedroom2 Bedroom1 Bath Bedroom 3 Bedroom 2

Figure 2: Graph-Aided Design and Generation, Source: [4]

The recent emergence of machine learning approaches, particularly generative adversarial networks
(GANSs), promises to capture the implicit design knowledge embedded in existing floor plans. House-

GAN exemplifies this approach, using relational GANs to generate layouts from bubble diagrams that

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 9
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

encode room types and adjacencies [7] (Figure 3). The system learns from 117,000 real floor plan
images, producing diverse and realistic layouts that maintain specified spatial relationships. Yet, while
House-GAN excels at generating visually plausible layouts, it struggles with ensuring building code

compliance and cannot guarantee that generated designs meet specific dimensional requirements,

critical factors for professional practice.

Figure 3: House-GAN, Graph-based house layout generator, Source: [7]

2.2.2 THE PERSISTENT CHALLENGE OF BUILDING CODE COMPLIANCE

Perhaps the most significant gap in automated floor plan generation research is the treatment of building
code compliance. Most academic systems either ignore regulatory requirements entirely or implement
simplified dimensional checks that fail to capture the complexity of real building codes [8]. Building
codes are not merely collections of minimum dimensions; they represent intricate systems of interrelated

requirements governing everything from structural safety to accessibility to environmental performance.

The Design Automation Tool (DAT) developed at Warsaw University of Technology attempts to
address this gap by incorporating zoning rules and sunlight analysis into the generation process [8].
Operating through three stages: massing optimization, floor division, and apartment layout generation,
DAT can produce complete apartment blocks in approximately 25 minutes. The inclusion of regulatory
considerations represents progress, yet the system's limitation to point block typologies and its reliance
on specific software platforms (Rhinoceros with Grasshopper) highlights the challenge of creating

universally applicable solutions.

The complexity of building codes extends beyond simple geometric constraints. Requirements for
natural lighting, for instance, involve not just window-to-floor ratios but also considerations of
orientation, obstruction angles, and daylight factors that vary by room type and geographic location [9].
Accessibility requirements encompass not only door widths but also manoeuvring spaces, reach ranges,
and approach clearances that must be verified in three dimensions. Fire safety regulations create
interdependent requirements for egress paths, compartmentalization, and detection systems that cannot

be validated through simple dimensional checks.

10 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

2.3 FROM 2D LAYOUTS TO BIM INTEGRATION
2.3.1 THE BIM GAP IN ACADEMIC RESEARCH

While numerous research projects successfully generate 2D floor plans, the transition to Building
Information Models remains largely unexplored in academic literature. This gap is particularly
problematic given BIM's industry-standard status [3]. The disconnect between 2D layout generation and
BIM production means that even successful automated layouts require extensive manual work to

become usable in professional workflows.[10]

An evolutionary approach for spatial architecture layout design demonstrates the potential for multi-
level building generation through agent-based topology finding combined with grid-based optimization
[11]. The system successfully generates complex multi-story layouts in 3-15 minutes, proving that
automated systems can handle three-dimensional spatial relationships (Figure 4). However, the output
remains geometric rather than semantic, lacking the rich information structure that defines true BIM

models.

Figure 4: Generated multi-story layouts, Source: [11]

The shape grammar approach offers a promising bridge between generative design and BIM production.
By encoding design rules that can be automatically converted to BIM elements, this method maintains
design quality while enabling automation [3]. The integration with ArchiCAD through Grasshopper
demonstrates that rule-based generation can produce construction-ready documentation. Yet, the
requirement for architects to manually define shape grammar rules for each project type limits scalability

and accessibility.
2.3.2 COMMERCIAL SOLUTIONS AND THEIR LIMITATIONS

The commercial landscape reveals both industry recognition of the automation opportunity and the
limitations of current approaches. TestFit has gained traction for early-stage feasibility studies, enabling

rapid evaluation of site utilization and unit mix optimization. Its strength lies in integrating zoning

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 11
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

regulations and financial metrics, providing instant feedback on design feasibility [12] (Figure 5).
However, TestFit's focus on standardized solutions and limited flexibility for unique architectural
expressions highlights a fundamental tension: the trade-off between automation efficiency and design

creativity.

TestFtApha Fle Edt Help Developer ¢ TestFit Alpha

— podium fl site

+BExX

TOTAL EUI

Jcovetool 52.8 equipment 1286
KTU/sqftiyr fans 528

podium fil save allto preset

[Cresetonayais | |

Figure 5: Testfit, Source: [12]

Skema.ai takes a different approach, emphasizing the reuse and adaptation of existing design knowledge
rather than generation from scratch [13] (Figure 6). By learning from a firm's previous Revit projects
and creating a "Design Catalog" of modular components, Skema addresses the important issue of
maintaining design consistency while accelerating production. The platform's two-way integration with
SketchUp and Revit demonstrates an understanding of existing workflows. Yet, its heavy dependence
on Revit and the need for extensive prior project data limit accessibility for smaller firms or those
beginning their digital transformation.

Lang use

Floor Aves Rato a2
i Developabie she ratia & 56

g plot arwa. 12 1828679

Accomodation sehedule

ey b

St maa semmary

Lbed 2 penian 1bed 3 pemsoe bed 4 panian T W Pt ke

Sroup "oAaC i Unat Type: st oursin Trpe) reRaC ol Tyl o

) 1bed 2person 1370 M v [i

Figure 6: Skema.ai, Source: [13]

12 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The Roombook extension for Revit illustrates another category of tools that enhance rather than replace
manual design processes [14]. While not generating floor plans, Roombook's detailed quantification
capabilities address the downstream needs of generated designs. Its limitations with linked models and
the need for meticulous modelling practices reveal the challenges of working within existing BIM

platforms' constraints.

Recent entrants in the commercial space have embraced Al and machine learning as the primary driver
for floor plan generation, representing a shift from rule-based parametric systems to data-driven
approaches. Maket.ai exemplifies this new generation of tools, offering Al-powered instant generation
of residential floor plans with promises of natural language input capabilities. The platform allows users
to specify constraints through parameters and generates hundreds of variations instantly, with integrated

visualization in 3D environments [15].

Similarly, platforms like Homestyler, Planner 5D, and CamPlan leverage Al to convert sketches, photos,
or even text descriptions into functional floor plans, dramatically lowering the technical barrier to entry.
However, these Al-first solutions reveal new limitations: while they excel at rapid generation and
visualization, they typically lack robust building code verification, produce generic solutions that require
extensive manual refinement for professional use, and offer limited control over specific architectural
requirements. The promise of natural language input remains largely unfulfilled. Most systems still
require structured parameter input or rely on simple text prompts that cannot capture the complexity of
architectural specifications. Furthermore, the BIM integration remains superficial; these tools generate
visual representations rather than information-rich models required for construction documentation.
This proliferation of Al-powered tools demonstrates market demand for accessible floor plan generation
while simultaneously highlighting the persistent gap between consumer-oriented visualization tools and

professional architectural requirements.
2.4 INTERFACE PARADIGMS AND USER INTERACTION
24.1 THE COMPLEXITY BARRIER

A critical but often overlooked aspect of automated design systems is the interface through which users
specify requirements and interact with the generation process. Most academic systems require users to
define constraints through complex parameter sets or programming interfaces, creating a significant

barrier to adoption [16].

The Mixed Integer Quadratic Programming (MIQP) approach demonstrates this challenge clearly [16].
While the system generates diverse layouts from residential apartments to shopping malls with
impressive speed, orders of magnitude faster than previous methods, users must formulate their

requirements as mathematical constraints. This requirement for mathematical formulation excludes most

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 13
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

architects and clients from direct system use, necessitating technical intermediaries that slow the design

process.

Procedural generation from building sketches offers a more intuitive input method, allowing users to
draw building outlines that are automatically converted to floor plans [9] (Figure 7). The system achieves
98.75% accuracy in wall detection and 94.27% for openings, generating diverse layouts in milliseconds.
This sketch-based approach aligns better with architectural thinking, yet it still requires users to fully

specify building geometry upfront, limiting exploration and iteration.

BED KITCH EIJ

= DINING

LIVING

(c)

Figure 7: Procedural Generation, Source: [9]
2.4.2 THE PROMISE OF NATURAL LANGUAGE

The potential for natural language interfaces to democratize access to automated design tools remains
largely unexplored in the floor plan generation literature. While recent advances in large language
models have demonstrated remarkable capabilities in understanding and generating human language,
their application to architectural design specifications has received minimal attention [17]. Natural
language could enable users to express requirements in familiar terms: "create a two-bedroom apartment
with good natural lighting and an open kitchen", rather than through abstract parameters or geometric

constraints.

The challenge lies not merely in parsing natural language but in translating ambiguous human
expressions into precise geometric operations. Architectural language is rich with implicit knowledge:
"good natural lighting" implies specific window-to-floor ratios, orientation preferences, and spatial
arrangements that vary by cultural context and building type. "Open kitchen" suggests not just the

absence of walls but specific sight lines, circulation patterns, and social relationships between spaces.

14 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

2.5 THE STATE OF CURRENT PRACTICE

2.5.1 WHY AUTOMATION HASN'T TRANSFORMED ARCHITECTURE

Despite decades of research and numerous commercial offerings, automated floor plan generation has

not transformed architectural practice as once predicted.

First, the fragmentation of solutions means architects must cobble together multiple tools to complete
even simple projects. One tool might excel at space planning but lack BIM integration; another might
offer BIM connectivity but ignore building codes; yet another might check compliance but require
manual layout creation [18]. This fragmentation creates workflow complexity that often exceeds the

manual processes these tools aim to replace.

Second, the inability to handle edge cases and unique requirements means automated tools are relegated
to preliminary studies rather than integrated into the complete design process. Architecture inherently
involves responding to unique site conditions, client preferences, and cultural contexts that resist
standardization. When automated systems cannot accommodate these variations, architects must either

compromise design quality or abandon automation entirely.

Third, the lack of transparency in automated decision-making creates distrust among professionals
trained to take responsibility for their designs. When a system generates a layout through opaque
optimization processes or machine learning models, architects cannot verify that all requirements have
been met or understand why specific decisions were made. This "black box" problem is particularly

acute for building code compliance, where architects bear legal responsibility for violations.
2.5.2 THE INTEGRATION CHALLENGE

The literature reveals a consistent pattern: successful automation requires not just algorithmic
sophistication but careful integration with existing tools, workflows, and professional practices. The
most promising approaches recognize that automation should augment rather than replace human

expertise, providing intelligent assistance while maintaining designer control.

The evaluation of Al-generated residential floor plans highlights the importance of comprehensive
metrics that go beyond simple geometric validity [19]. Metrics must consider functional performance,
aesthetic quality, code compliance, and constructability, a multi-dimensional evaluation that mirrors the
complex judgments architects make. Yet, current systems typically optimize for one or two metrics

while ignoring others, producing technically valid but practically inadequate solutions.

Recent work has begun to address this evaluation gap more systematically. Zeng et al. developed RFP-
A (Residential Floor Plan Assessment), a hierarchical framework evaluating generated plans through

room count compliance, spatial connectivity, room locations, and geometric features [19]. Testing six-

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 15
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

generation models revealed that only HouseDiffusion and FloorplanDiffusion achieved over 90%
accuracy in basic room number compliance, while others scored below 60% (Figure 8). However, RFP-
A remains a post-generation evaluation tool that cannot guide generation toward compliance or handle
building codes across jurisdictions. It evaluates completed designs rather than integrating requirements
into the generation process, highlighting the continued need for systems that ensure compliance during

generation rather than identifying failures afterward.

Stage 4. Geometric of the Room

! a

_;'f .'\ =—=: Comparison __| : Livingroom
[
! \ ’ : = - [] : Bedroom
_i b Stage 3/Orientation of the Room 2

| ' .
L) ! [: Toilet
part | ! Design details |

L - = [: Kitet

ll | /\t.!y. 2. Graph of the Room & - Kdtchen

I l

| I

/v- -r-: : \[| : Balcony
i

Whole Foundation St lbn_ 1. Number of the Room

Figure 8: RFP-A Evolution metrics structure diagram, Source: [19]

2.6 IDENTIFYING THE RESEARCH GAP
2.6.1 THE CONVERGENCE OPPORTUNITY

The literature review reveals not a single gap but a convergence of multiple gaps that, when addressed
together, could finally realize the promise of automated floor plan BIM model generation. These gaps

are:

1. Natural Language Specification: No existing system enables users to specify complex architectural
requirements through natural language, despite this being how clients and architects naturally
communicate about space. The absence of natural language interfaces maintains a barrier between user

intent and system execution that limits adoption.

2. Integrated Building Code Compliance: Current systems either ignore building codes or implement

simplified checks that fail to capture regulatory complexity. The lack of comprehensive, jurisdiction-

16 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

specific code checking means generated designs require extensive manual verification, negating

efficiency gains.

3. Direct BIM Generation: The disconnect between layout generation and BIM production creates a
workflow gap that requires manual bridging. Without native BIM output, automated layouts cannot

integrate with downstream processes for documentation, coordination, and construction.

4. Real-time Modification: Many existing systems treat generation as a one-time process rather than
supporting the iterative refinement that characterizes architectural design. The inability to quickly

modify and regenerate designs based on feedback limits practical utility.

5. Transparent Decision-Making: The opacity of current optimization and machine learning
approaches creates distrust and liability concerns. Without understanding how decisions are made,

architects cannot confidently use automated systems for professional projects.
2.6.2 TOWARD AN INTEGRATED SOLUTION

The path forward requires not only incremental improvement of existing approaches but also a
fundamental rethinking of how automated design systems should interact with users and integrate with

professional workflows. The ideal system would:

e Accept requirements in natural language while maintaining precision
e Continuously ensure building code compliance throughout generations
e Produce fully parametric BIM models ready for documentation

e Support iterative refinement through clear modification commands

e Provide transparent reporting of decisions and trade-offs

o Integrate seamlessly with existing BIM platforms

Such a system would transform automated floor plan generation from an academic curiosity or
preliminary design tool into an integral part of professional architectural practice. By addressing the
convergence of gaps identified in this review, it would finally bridge the chasm between theoretical

capability and practical utility.
2.7 CONCLUSION

This literature review has traced the evolution of automated floor plan generation from early constraint-
based approaches through current machine learning systems, revealing both remarkable algorithmic
achievements and persistent practical limitations. While academic research has demonstrated that

computers can generate valid floor plans quickly, and commercial tools have shown that automation can

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 17
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

accelerate specific design tasks, no existing solution provides the comprehensive capabilities required

for professional architectural practice.

The critical gaps: natural language interaction, building code compliance, BIM integration, iterative
modification, and decision transparency are not independent challenges but interconnected aspects of a
single problem: how to create automated design tools that architects can confidently use for real projects.
The literature suggests that addressing these gaps requires not just technical innovation but careful
attention to professional workflows, regulatory requirements, and the nuanced relationship between

human creativity and machine efficiency.

The convergence of recent advances in natural language processing, parametric modelling, and BIM
technology creates an unprecedented opportunity to finally realize the long-standing vision of automated
floor plan generation. The system proposed in this thesis, which integrates natural language interfaces
with building code compliance and direct BIM generation, represents an attempt to bridge these critical
gaps and transform automated design from an auxiliary tool into an essential component of architectural
practice. The following chapter details the architecture and implementation of this integrated solution,
demonstrating how the gaps identified in this literature review can be systematically addressed through

careful system design and implementation.

18

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 19
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

3 METHODOLOGY

3.1 RESEARCH FRAMEWORK

The development of the Parametric Generation of Standardized Spaces required a methodological
approach that could bridge the gap between theoretical possibilities identified in the literature and
practical implementation constraints of professional practice. The research adopted a design science
framework, which emphasizes creating innovative artifacts that solve real-world problems while

contributing to theoretical knowledge.

The problem decomposition strategy began with identifying the fundamental disconnect between
stakeholder needs and existing solutions. Rather than approaching floor plan generation as a purely
algorithmic challenge, as much of the academic literature does, or as a simple drafting acceleration tool,
as commercial solutions typically position themselves, this research reconceptualized the problem as a
translation challenge. The core question became: how can natural human spatial thinking be accurately
translated into precise BIM operations while maintaining professional standards and regulatory

compliance?

This reconceptualization led to decomposing the challenge into three interconnected translation
problems. First, the linguistic translation problem involved converting natural language specifications
into structured parametric operations. Second, the regulatory translation problem required transforming
textual building codes into computational constraints. Third, the geometric translation problem
demanded converting abstract spatial relationships into constructible BIM elements. Each translation
layer would require distinct methodological approaches while maintaining coherent information flow

between them.

The integration strategy explicitly rejected the traditional waterfall approach, where each component
would be developed in isolation, then integrated. Instead, the methodology employed continuous
integration principles, where each component's development informed and constrained the others. This
approach ensured that solutions remained practically viable rather than theoretically elegant but
unusable. For instance, the natural language processing capabilities were developed in tandem with the
parametric engine's requirements, ensuring that parsed specifications could be directly executed rather

than requiring intermediate transformation steps.

20 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

INVESTORS ARCHITECTS CLIENTS
(Feasibility) (Efficiency) (Participation)

S -

PROBLEM
IDENTIFICATION

LINGUISTIC TRANSLATION REGULATORY TRANSLATION GEOMETRIC TRANSLATION Y

NATURAL) SPATIAL
LANGUAGE TEXT CODES RELATIONS

METHODOLOGICAL
APPROACH

PARAMETRIC COMPUTATIONAL
OPERATIONS CONSTRAINTS

BIM ELEMENTS

’
!

1

i TECHNICAL COMPLIANCE PERFORMANCE USABILITY

: VALIDATION VALIDATION YALIDATION VYALIDATION
[

|-

1

~
AY

TEMPLATE TESTING * CODE CHECKING * TIME METRICS * WORKFLOW ANALYSIS
PARAMETRIC RANGES * MANUAL VERIFICATION * QUALITY ASSESSMENT + USERTESTING

S

VALIDATION
FRAMEWORK

__

Figure 9: Methodological Framework for Parametric Generation System Development

The framework illustrates the three-layered approach: stakeholder problem identification, parallel
translation methodologies, and comprehensive validation. Bidirectional arrows indicate iterative

refinement based on validation feedback.
3.2 SYSTEM DEVELOPMENT APPROACH

The development methodology emerged from a critical analysis of why existing automated design tools
fail to achieve widespread adoption despite technical sophistication. The literature review revealed that
solutions typically optimize for single user groups—either providing powerful features that only

specialists can operate, or simplified interfaces that produce inadequate professional outputs [10]. This

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 21
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

research, therefore, adopted a multi-stakeholder development approach that prioritized concurrent

satisfaction of diverse user needs rather than sequential feature addition.

Requirements gathering began by analysing actual workflow patterns in architectural practices and real
estate development firms. Rather than relying on assumed user needs, the methodology examined
specific pain points through documented project timelines. Analysis of residential project
documentation from architectural firms revealed that initial concept generation typically consumed 2-4
weeks, with an additional 4-8 weeks for detailed development [1]. Within this timeline, architects
reported spending approximately 60% of their time on repetitive technical tasks such as dimension
verification and code compliance checking, leaving limited time for design exploration and client
interaction [20]. This empirical understanding of current practice inefficiencies directly informed system

requirements.

Three distinct user archetypes emerged with different interaction needs. Investors required rapid
generation of multiple options for feasibility analysis, but had no interest in technical BIM details.
Architects needed professional-grade outputs with precise control over modifications while avoiding
repetitive manual tasks. Clients desired meaningful participation in design decisions without requiring
technical knowledge. These conflicting requirements could not be satisfied through a single interface
paradigm, leading to the decision to separate user interaction from BIM generation through an

intermediate command layer.

The iterative development strategy rejected the waterfall model common in BIM tool development,
where complete specifications precede implementation [21]. Instead, the methodology employed rapid
prototyping cycles that tested core assumptions before committing to technical implementations. The
first prototype tested whether file-based communication could provide sufficient responsiveness for
interactive design. Using simple Python scripts writing JSON files that triggered basic Revit operations,
this prototype validated that file-monitoring could achieve sub-second response times adequate for user
interaction. This early validation prevented investment in more complex communication architectures

that would have provided marginal benefits while increasing deployment complexity.

Component isolation emerged as a fundamental architectural principle based on analysis of existing tool
limitations. TestFit's monolithic architecture makes it difficult to adapt to non-standard projects [12],
while Skema.ai's tight Revit integration limits accessibility for non-technical users [13]. The
methodology, therefore, mandated strict separation between user interface logic, command processing,
and BIM operations. This separation enabled independent evolution of components—the natural
language processing could be refined based on user feedback without modifying BIM generation logic,

while new building codes could be added without touching the user interface.

22 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The decision to implement file-based communication rather than direct API calls or network protocols
stemmed from deployment reality analysis. Enterprise IT policies frequently restrict network socket
creation and inter-process communication, requiring extensive security reviews for systems using such
approaches [22]. File operations within user directories require no special permissions and work
consistently across diverse security contexts. The JSON format was selected for its human readability,
enabling manual debugging when necessary, and its universal support across Python and .NET

environments without additional dependencies [23].

The progressive refinement approach began with core functionality before adding sophistication. Initial
development focused on generating simple rectangular rooms with fixed dimensions, validating the
complete pipeline from user input to BIM creation. Only after this foundation proved stable were
parametric relationships introduced, followed by building code compliance, and finally natural language
processing. This incremental complexity management ensured that each layer built upon proven

functionality rather than compounding untested assumptions.

Testing integration occurred continuously rather than as a final phase. Each development iteration
included validation with representative user tasks derived from actual project requirements. For
instance, when implementing area adjustment capabilities, test cases came from documented apartment
projects where total area constraints drove design decisions [24]. This reality-grounded testing revealed
1ssues that abstract test cases would miss, such as the need to maintain minimum room dimensions while
scaling to match total area requirements—a common real-world constraint that purely algorithmic

approaches often violate.
33 TECHNICAL IMPLEMENTATION STRATEGY

The selection of PyRevit [25] inside Revit [26] as the implementation platform represented a strategic
methodological decision, balancing rapid development needs with long-term maintainability.
Traditional C# Revit add-ins would have required lengthy compile-build-deploy cycles for each
iteration, fundamentally limiting the ability to explore alternative approaches quickly. PyRevit's
interpreted environment enabled immediate testing of algorithmic variations, crucial for developing
complex features like building code compliance checking, where requirements emerged through

experimentation rather than upfront specification.

The natural language processing development followed a deliberate methodology of building domain-
specific capability rather than leveraging general-purpose Al services. This decision stemmed from
multiple considerations: privacy concerns in professional practice where project data cannot leave
corporate networks, the need for predictable and debuggable behaviour in professional tools, and the

observation that architectural language is sufficiently specialized that general models perform poorly.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 23
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The methodology involved systematic analysis of how architects and clients actually describe spaces,

building a corpus of expressions that the system needed to understand.

The template-based approach emerged through methodological experimentation with different
generation strategies. Initial attempts using pure algorithmic generation, while theoretically promising,
faced the challenge identified across the literature, where optimization-based methods produce layouts
that satisfy dimensional constraints but lack the spatial qualities that emerge from architectural
experience [18]. Constraint-based optimization could satisfy requirements, but required users to specify
dozens of parameters, defeating the accessibility goal. The template methodology recognized that most
apartment designs follow established patterns that encode centuries of architectural knowledge. By
parameterizing these patterns rather than generating them from scratch, the system could ensure quality
while maintaining flexibility. Furthermore, the template library was designed as an expandable
repository where architects from different firms could contribute their proven designs, creating a
growing knowledge base that increases both the system's capability and credibility. This collaborative
expansion model transforms the system from a static tool into an evolving platform that captures diverse

architectural expertise while maintaining quality through pre-validation of each template

Building code data extraction followed a rigorous methodology designed to ensure accuracy and
completeness. Rather than relying on secondary sources or interpretations, the research went directly to
official government publications for each of the ten countries. The extraction process involved multiple
passes: initial identification of relevant sections, systematic extraction of quantifiable requirements,
cross-validation against published architectural guidelines, and verification through test cases based on
actual approved buildings. This methodological rigor was essential given that code compliance errors

could have legal implications for system users.

The structuring of building code data into computational formats required developing a specialized
methodology for handling regulatory ambiguity. Building codes often use qualitative language like
"adequate" or "sufficient" that resists direct quantification. The methodology involved identifying the
most restrictive reasonable interpretation, ensuring generated designs would satisfy even conservative
reviewers. Where codes specified performance requirements rather than prescriptive dimensions, the
system incorporated established architectural standards as proxy measures, documenting these

interpretations for transparency.

34 VALIDATION & TESTING METHOD

The validation methodology employed a systematic approach to ensure the reliability and effectiveness
of the parametric generation system. Given the research context of a master's thesis with limited
resources for extensive field testing, the validation strategy focused on rigorous technical verification

and proof-of-concept demonstration rather than large-scale empirical studies.

24 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Template validation began with geometric integrity checking to ensure that each template could function
correctly across its intended parametric range. Each template underwent systematic testing where global
parameters were adjusted from minimum values (based on building code requirements) to maximum
feasible dimensions. This testing verified that room boundaries remained properly closed, walls
maintained proper connections at corners, and circulation paths stayed unobstructed. The validation
process particularly focused on critical transition points where parametric adjustments might cause
geometric failures, such as when room dimensions approach minimum code requirements or when total

area constraints force proportional scaling.

Building code compliance verification adopted a systematic approach to validate the computational
interpretation of regulatory requirements. The verification process compared the system's encoded
building code constraints against the original regulatory documents for each of the ten countries. For
each room type, minimum dimensions were cross-referenced with official publications to ensure
accurate interpretation. The system's ability to enforce these requirements was tested through deliberate
attempts to generate non-compliant designs, verifying that the compliance checking mechanisms
properly prevented or flagged violations. This validation confirmed that the system correctly applied
requirements such as minimum room areas, corridor areas, total apartment areas, and ceiling height as

specified in each country's building code.

The natural language processing validation focused on ensuring accurate interpretation of common
architectural specifications. A test suite of typical user inputs was developed, ranging from simple
commands like "create a 2-bedroom apartment" to more complex specifications involving multiple
parameters. Each test case was processed through the natural language interpreter, and the resulting
JSON command structure was verified against expected outputs. This validation revealed the importance
of handling variations in how users express the same requirement, leading to refinements in the pattern-

matching algorithms to accommodate different phrasings of identical specifications.

System workflow validation tested the complete pipeline from user input to BIM model generation. The
testing followed typical use scenarios: creating new apartment layouts, adjusting dimensions to meet
specific requirements, and modifying generated models through natural language commands. Each
workflow was executed multiple times to ensure consistent behavior and identify any synchronization
issues between the external Ul and the PyRevit plugin. The file-based communication protocol proved
robust, with the JSON command files successfully transmitting all necessary parameters and the status

update mechanism providing reliable feedback about operation completion.

The practical performance assessment, conducted through the author's direct testing as a practicing
architect, demonstrated the system's capability to generate complete BIM models within seconds of
command execution. A typical 2-bedroom apartment, which would traditionally require hours to model

manually in Revit, could be generated with proper wall connections, door and window placements, and

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 25
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

room definitions in under one minute from initial specification to completed model. This dramatic time
reduction was consistent across different apartment configurations, from studio units to four-bedroom

layouts, validating the system's efficiency claims.

Quality assessment of generated models examined their suitability for professional use. The generated
BIM models included proper element classification, with walls, doors, and windows correctly
categorized and tagged with appropriate metadata. Room elements were automatically created with
accurate area calculations and proper boundary detection. The parametric relationships embedded in the
templates remained functional in the generated models, allowing for subsequent manual adjustments if

needed.

The modification capability testing verified that the system's natural language commands could
successfully alter generated models. Tests included flipping door orientations, changing window
families, and adjusting wall types through commands referencing the automatic element numbering
system. The success of these modifications demonstrated that the system maintained proper element
tracking and could execute targeted changes without requiring users to navigate Revit's native selection

tools.

Limitations of the validation approach must be acknowledged. The testing was primarily conducted by
the system developer, which, while providing deep technical verification, lacks the breadth of
independent user testing. The absence of testing in commercial architectural firms means that
performance under production conditions with varying project requirements remains unverified.
Additionally, the testing focused on successful generation scenarios rather than systematically exploring
failure modes and edge cases that might emerge in professional practice. These limitations are
acceptable within the scope of a master's thesis proof-of-concept but would require addressing before

commercial deployment.

3.5 EVALUATION FRAMEWORK

The evaluation framework established criteria for assessing the system's effectiveness within the
constraints of a master's thesis project. Rather than extensive empirical testing with multiple users, the
framework focused on demonstrable capabilities and technical validation that could be rigorously

verified through systematic testing.

Time efficiency evaluation compared the automated generation process against traditional manual
modelling workflows. The system consistently generated equivalent models in under one minute,
representing a time reduction of over 98% from the traditional workflow [1]. This comparison, while

limited to single-user testing, provides a concrete benchmark for the system's efficiency gains.

26 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Code compliance assessment examined whether generated models met the requirements encoded in the
ten building codes. Each generated apartment was checked against the relevant building code's minimum
requirements for room dimensions, total areas, and ceiling heights. The system successfully prevented
the generation of non-compliant designs by refusing to process specifications that violated minimum
requirements and automatically adjusting dimensions when necessary to achieve compliance. This
validation confirmed that the building code integration functioned as designed, though comprehensive

testing across all possible edge cases was beyond the thesis scope.

Output quality evaluation focused on the professional usability of generated models. The assessment
criteria included proper element classification (walls as walls, doors as doors), correct spatial
relationships (rooms properly bounded, doors connecting spaces), and preservation of parametric
relationships enabling subsequent modification. Generated models maintained the organization and
structure expected in professional practice, with elements properly grouped and named according to

Revit conventions.

System reliability was assessed through repeated execution of standard workflows. The same apartment
specifications were processed multiple times to verify consistent output. The file-based communication
protocol successfully transmitted commands from the external Ul to Revit without data loss or
corruption across all test cases. The element numbering system correctly labelled all components,

enabling reliable selection for modifications.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 27
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4 PARAMETRIC GENERATION SYSTEM ARCHITECTURE

4.1 INTRODUCTION

This chapter presents the comprehensive system architecture of the Parametric Generation of
Standardized Spaces. This innovative BIM automation solution transforms the traditional approach to
architectural design through intelligent parametric apartment modelling and building code compliance.
The system represents a paradigm shift in how architects and designers interact with BIM software,
introducing a streamlined workflow that combines natural language input capabilities with dropdown-
based quick selection, all while maintaining strict adherence to international building codes and

professional standards.

The architecture has been designed to address the critical gaps identified in existing solutions: the lack
of integrated building code compliance, the complexity of parametric modelling interfaces, and the
disconnect between user intent and BIM implementation. Unlike conventional approaches that require
extensive manual parameter manipulation or complex scripting, this system provides an intuitive
interface that translates high-level requirements directly into fully compliant BIM models within

Autodesk Revit [26].

The development of this system required careful consideration of multiple technical challenges: how to
effectively parse and interpret natural language inputs without relying on external Al services, how to
maintain building code compliance across multiple jurisdictions, how to create a robust file-based
communication system between the Ul and Revit, and how to generate complete BIM models from
simplified template representations. This chapter details the architectural decisions and implementation

strategies employed to address these challenges.

4.2 SYSTEM OVERVIEW

4.2.1 HIGH-LEVEL ARCHITECTURE

The Parametric Generation system consists of three primary components that work together to enable

automated BIM generation from user specifications:

i. External User Interface Application: A standalone desktop application that provides both
natural language input capabilities and structured dropdown menus for requirement
specification. This interface handles all user interactions and generates structured command
files for processing by Revit.

ii. Revit Plugin System: A native Revit add-in developed in C#/.NET that reads command files,

manages template selection, performs parametric adjustments, ensures building code

28 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

compliance, and generates complete 3D BIM model of an Apartment with properly numbered
elements.

iii. File-Based Communication Layer: A JSON-based file system that enables reliable
communication from the Ul to Revit, using structured command queues and status updates to

coordinate the generation process.

The system architecture deliberately avoids complex network protocols or external dependencies,

instead utilizing a robust file-based approach that ensures reliability and simplifies deployment [27].
4.2.2 WORKFLOW OVERVIEW

The complete workflow follows a carefully orchestrated sequence that ensures user requirements are

accurately translated into compliant BIM models (Figure 10).

4.2.2.1 Step 1: Requirement Specification using external UI
Users interact with the external Ul application to specify their requirements through two complementary

input methods:

e Natural language input for complex or nuanced requirements

e Dropdown menus for quick selection of standard options

4.2.2.2 Step 2: JSON Generation by Command Queue
The UI application processes user inputs and generates a structured command queue, saved as a JSON

file in a designated directory that Revit monitors.

4.2.2.3 Step 3: Revit Processing

When users click "Process All Commands" in the Revit plugin, the system:

e Reads the JSON file’s command queue file

o Selects appropriate templates based on bedroom/bathroom configuration
e Applies building code requirements for the specified country

e Adjusts parameters to meet area and dimensional requirements

e Generates the complete 3D BIM model

4.2.2.4 Step 4: Element Identification
The generated model includes numbered elements (walls, doors, windows) that enable subsequent

modifications through natural language commands.

4.2.2.5 Step 5: Modification Support
Users can request modifications by referring to numbered elements, such as "flip door D1" or "change

family of window W3," which the system processes to update the model accordingly.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 29
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

(]
[®][~] [o0]
USER INTERFACE (UI)
,,’ ______________ "\\
/' NATURALLANGUAGE INPUT %,
I I
NPUT | . i JSON FILE BASED
_ I INEEEEEE : COMMUNICATION
: ' — | CREATES
USER I | ISONFILE
- — OR i >
! I
. DROPDOWN MENUS :
1
! — i
\ — / JSON FILE
_ _____________ II L
————eee e
R
RVT
MODIFICATION

A

PYREVIT PLUGIN

MODIFICATION

FINAL FLOOR’S BIM MODEL

Figure 10: Complete Parametric Generation Workflow

30 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.3 EXTERNAL USER INTERFACE APPLICATION

The External User Interface Application serves as the primary interaction point between users and the
BIM generation system. Developed as a standalone desktop application using Python [28], this interface
provides an intuitive environment for specifying architectural requirements without requiring deep
knowledge of Revit or parametric modelling. The application transforms complex architectural
specifications into structured commands that can be processed by the Revit plugin, bridging the gap

between human intent and machine execution.
4.3.1 INTERFACE DESIGN & LAYOUT

The user interface has been meticulously designed to balance functionality with usability, providing
multiple input modalities to accommodate different user preferences and expertise levels. The interface
architecture follows a hierarchical organization that guides users through the specification process while

maintaining flexibility for advanced users who prefer direct control.

The application window is systematically organized into seven functional zones, each serving a specific

purpose in the requirement specification workflow (Figure 11):

i ic G 1 of ized Spaces - BIM A - [} X
('a ‘\, Parametric Generation of Standardized Spaces
WY BN BIM A+ Masters thesis

Author: A Ashiqul Mursalin Chy

Natural Language Input ’ ‘\‘
1

Quick Parameter Selection
- |
o \
.,

. ’

f' \ ~ew? Apartment Bedroom Number:
% ll Add to Queue =

g Total Area (sqm):

Building Code:
— Command Queue Wall Height (m):

-

/ Y
[d ‘I Clear Queue

\ g

Save Queue

-

. Save queue, then click Process All Commands'in Revit
N

i f 5
1
. BasicCommands ElementSelection % 1 &
et ~—
{ | | Createa 2bedroom apartment Apariment area should be 70 square meters
7
Mt Use Bangladesh building code Wall height should be 3 meters

Place doors and windows

Status
" N frae:
\ g ‘l [1s9:
= e

[1s:
[19:47:

& Parametric Generation System Ready

@ Type commands and add them to gueue, or use dropdown menus
B save queue ready, then process in Revit

e d Label-based ent selection supported!

[¥) Use dropdown menus for guick parameter selection

Figure 11: External User Interface Design & Layout

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 31
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

a. Header Section: The header establishes the professional and academic context of the application:

e Title: "Parametric Generation of Standardized Spaces" clearly identifies the application's
purpose

e Subtitle: "BIM A+ Master's thesis" acknowledges the academic foundation

e Author attribution: "A Ashiqul Mursalin Chy" provides proper credit

e BIM A+ logo reinforces institutional affiliation and professional credibility

b. Natural Language Input Panel: This panel represents the primary innovation in user interaction,
featuring a large text area that accepts free-form requirement specifications. Users can express their
needs in plain English, making the system accessible to non-technical stakeholders. The interface

supports both comprehensive single-line specifications and incremental multi-line inputs:

e Single comprehensive input: "Create a 2 bedroom apartment with 70 square meters total area
using the Slovenian building code with 3-meter wall height"
e Incremental specification: Users can build requirements step by step:
"Create a 2 bedroom apartment"
"Area will be 75 sqm"
"Follow Portugal Building Code"
"Set wall height to 3 meters"
Guide text above the input area provides clear instructions: "Guide for natural language input: Select
bedroom numbers, Select Area, Select Building Code, and wall height," ensuring users understand the

expected input format without constraining their expression style.

¢. Quick Parameter Selection Panel: For users who prefer structured input or need to make quick

adjustments, the dropdown panel provides rapid parameter selection:

e Apartment Bedroom Number: Predefined options (1BR, 2BR, 3BR) with Custom option for
non-standard configurations

e Total Area (sqm): Common sizes (50, 60, 70, 80, 90, 100 sqm) with Custom input for specific
requirements

e Building Code: Dropdown listing all 10 supported countries (Slovenia, USA, Germany, France,
Spain, Australia, Netherlands, Norway, Portugal, Bangladesh)

e Wall Height (m): Standard heights (2.5, 2.7, 3.0, 3.3, 3.5 m) with Custom option for special

cases

The selection panel includes instructional text: "Select values to add to command queue," clarifying the

relationship between selection and queue management.

32 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

d. Command Queue Section: The command queue provides transparency and control over the

generation process:

e Visual Display: Shows all pending commands in a scrollable list, allowing users to review their
specifications before processing

e Add to Queue Button: Transfers natural language input or dropdown selections to the queue

o Clear Queue Button: Enables users to reset and start fresh if needed

e Save Queue Button: Writes the command queue to a JSON file for Revit processing

e Instructional Note: "Save queue, then click 'Process All Commands' in Revit" guides users

through the two-step execution process
e. Basic Commands Panel: Pre-defined command buttons accelerate common operations:

e "Create a 2-bedroom apartment" - Instantly adds a standard apartment creation command

e "Apartment area should be 70 square meters" - Quickly specifies a common area requirement
e "Use Bangladesh building code" - Rapid building code selection

o "Wall height should be 3 meters" - Standard height specification

e "Place doors and windows" - Triggers opening placement algorithm

These buttons reduce typing effort and demonstrate proper command syntax, serving both as shortcuts

and instruction examples.
f. Element Selection Tab: This advanced feature enables post-generation modifications:

e Label-based element selection using the numbering system
e Dropdown menus for modification parameters
e Support for operations like flip, move, resize, and replace

e Visual feedback showing selected elements
g. Status Panel: Real-time feedback keeps users informed of system state and processing progress:

o Timestamped messages provide chronological operation history
e Icon indicators showing success, warnings, and errors

e System readiness notifications

e Processing stage updates

e Completion confirmations

Example status messages demonstrate the information hierarchy:

e "[19:47:07] & Parametric Generation System Ready"

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 33
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

o "[19:47.07] Type commands and add them to queue, or use dropdown menus"

e "[19:47:07] = Save queue when ready, then process in Revit"

e "[19:47:07] &) Label-based element selection supported!"

e "[19:47:07] Use dropdown menus for quick parameter selection”

Natural Language Input Panel Quick Parameter Selection Panel

Natural Language Input Quick Parameter Selection

Add to Queue Apartment Bedroom Number: v

Total Area (sqm): ~

Building Code:

Basic Commands Wall Height (m:

Basic Commands Element Selection

Create a 2 bedroom apartment Apartment area should be 70 square meters
Use Bangladesh building code Wall height should be 3 meters

Place doors and windows

Command Queue

v Y

Command Queue

1. select_template - {"template name": "2BR_1BA_ apartment"™} Clear Queue
(From: Create a 2 bedroom apartment)
Save Queue

2. set_area - {"total_area": 75}
(From: area 75sam)

F 3

3. set_building_code - {"building code": "slovenia_code"}
(From: Use Slovenia building code)

4. lines_to_walls - {"wall_height": 2.5, "wall_type": "Basic

JSON FILE BASED
COMMUNICATION

Save Queue

A 4

Figure 12: Multiple Input Options for External Ul

4.3.2 NATURAL LANGUAGE PROCESSING ENGINE

The custom-built natural language processing engine represents a significant technical achievement of
this system, enabling intuitive interaction without dependency on external Al services. The engine
employs sophisticated pattern matching and keyword extraction to interpret architectural requirements

with high accuracy, transforming human-readable specifications into machine-executable commands.

34 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The engine operates through a multi-layered processing pipeline that progressively refines user input
into structured data. At its core, the system maintains a comprehensive architectural vocabulary that
maps colloquial expressions to technical specifications. This vocabulary encompasses spatial
terminology (bedroom, bathroom, kitchen), quantitative expressions (one, two, few, several),
dimensional descriptors (small, medium, large, spacious), and modification qualifiers (approximately,

exactly, at least, maximum).

The pattern recognition layer employs regular expressions optimized for architectural specifications

[29]. These patterns can identify and extract:

e Room configurations: "two bedroom," "2BR," "2-bedroom," or "two-bed"
e Area specifications: "70 square meters," "750 sq ft," or "about 70 sqm"
e Height requirements: "3 meter ceiling," "10 foot height," or "standard height"

e Building codes: "Slovenian code," "Slovenia regulations," or simply "SI"

Unit conversion is seamlessly integrated into the parsing process [30]. The system automatically detects
measurement units and performs necessary conversions to maintain internal consistency. Whether users
specify "75 square feet" or "7 square meters," the system normalizes all measurements to metric units

for processing while preserving the original unit preference for display.

Context management adds intelligence to the parsing process. The system maintains conversation state,
understanding that "make it larger" refers to the previously specified apartment, or that "add another
bathroom" modifies the existing configuration rather than creating a new specification. This contextual

awareness enables natural, conversational interaction that feels intuitive to users.

class NaturallanguageParser
def init_ (self):
self.bedroom_patterns = [
r' (\d+)\s*(?:bed|bedroom|br)",
r' (\d+)br",
r' (\w+)\s*bedroom’
]
self.area_patterns = [
r' (\d+)\s*(?:square meters|sqm|m2|sq\.m}",
r’ (\d+)\s*meters?\s*squared?’
]
self.building_code_patterns = {
'bangladesh': ['bangladesh’,
'slovenia’: ['slovenia’, 'si’,

'usa': ['usa’, 'united stat

bd*, "dhaka']
"ljubljana’]

s, "america', 'ibc'],

)
3

=

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 35
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

def parse_input(self, text)
"""Extract parameters from natural language input™""
parameters = {}

for pattern in self.bedroom_patterns:
match = re.search(pattern, text.lower())
if match:
parameters['bedrooms’] = self._parse_bedroom_count(match.group(l1))
break
for pattern in self.area_patterns:
match = re.search(pattern, text.lower())
if match:
parameters['area’'] = float(match.group(l))
break

for code, patterns in self.building_code_patterns.items():
if any{p in text.lower() for p in patterns):
parameters['building code'] = code

break

return parameters
Figure 13: Command Queue JSON Structure

4.3.2.1 CUSTOM NATURAL LANGUAGE INTERPRETER DEVELOPMENT

The development of the custom natural language interpreter required addressing several key challenges
specific to architectural terminology and requirements specification. The interpreter architecture
consists of three primary components: the lexical analyzer, the semantic parser, and the requirement

synthesizer.

The lexical analyzer tokenizes input text and categorizes each token according to its architectural
significance. This process involves more than simple word matching; the analyzer considers word
position, surrounding context, and grammatical structure to determine meaning. For instance, "master"
before "bedroom" indicates a specific room type, while "master" in isolation might be ambiguous. The
analyser maintains a sophisticated understanding of architectural nomenclature variations, recognizing

nn

that "primary bedroom," "master bedroom," and "main bedroom" all refer to the same concept.

The semantic parser interprets the tokenized input to extract meaningful requirements. This component
implements a rule-based system that understands the relationships between architectural elements. It
recognizes that bedrooms require minimum areas, that bathrooms should be adjacent to bedrooms, and
that kitchens need ventilation. The parser applies these architectural rules to validate and complete

partial specifications, ensuring that extracted requirements are both complete and feasible.

The requirement synthesizer combines extracted elements into a coherent specification. This synthesis

process resolves conflicts, applies defaults for missing values, and ensures consistency across all

36 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

requirements. If a user specifies "2 bedrooms" without mentioning bathrooms, the synthesizer applies
architectural conventions to infer that a 2-bedroom apartment typically includes 1-2 bathrooms. These
inferences can be overridden by explicit specifications, maintaining user control while providing

intelligent defaults.

Error handling within the interpreter focuses on graceful degradation and user guidance. When the
system encounters ambiguous or incomplete input, it doesn't simply fail; instead, it provides specific
feedback about what's missing or unclear. For example, if a user types "make it bigger," the system
responds with "Please specify what to make bigger: the entire apartment, a specific room, or a particular
element?" This interactive clarification process helps users provide complete specifications without

frustration.

4.3.2.2 ELEMENT REFERENCE RESOLUTION

Element reference resolution enables users to specify modifications to generated models using natural
language descriptions rather than technical identifiers. This capability is crucial for the system's
usability, as it allows users to think and communicate in spatial and functional terms rather than abstract

numbering systems.

The resolution system implements multiple strategies to identify referenced elements. Direct numeric
references like "door D1" or "window W3" provide the most precise identification, directly mapping to
the element numbering system. However, the system's strength lies in its ability to resolve more natural

references.

Functional references identify elements by their purpose or role in the design. When users say "main
entrance door," the system analyzes door properties to identify which one serves as the primary entrance
based on its connection to circulation spaces and exterior access. Similarly, "master bedroom window"

is resolved by first identifying the master bedroom and then locating windows within that space.

The resolution algorithm employs a scoring system when multiple elements could match a description.
Each potential match receives scores based on various criteria: name similarity, spatial proximity,
functional role, and user interaction history. The element with the highest composite score is selected,

with the system requesting clarification only when scores are too close to determine a clear winner.

4.3.2.3 COMMAND GENERATION FROM NATURAL LANGUAGE

The final stage of natural language processing transforms interpreted requirements into structured
commands that the Revit plugin can execute. This transformation process ensures that all necessary
parameters are present, values are within acceptable ranges, and the command structure conforms to the

expected schema.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 37
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Command generation begins with command type determination. The system analyzes the interpreted
requirements to decide whether to generate a CREATE APARTMENT command (for new models), a
MODIFY _ELEMENT command (for changes to existing elements), or QUERY command (for

information retrieval). This classification drives the subsequent parameter packaging process.

Parameter validation ensures that all generated commands will execute successfully. The system checks
that numerical values fall within acceptable ranges, that referenced templates exist, and that building
codes are supported. If validation fails, the system attempts automatic correction where possible or

requests user clarification for ambiguous cases.

The command structure includes metadata that enables tracking and debugging. Each command receives
a unique identifier (UUID), timestamp, and session reference. This metadata proves invaluable for

troubleshooting and understanding the sequence of operations that led to a particular model state.
43.3 COMMAND QUEUE MANAGEMENT

The command queue system serves as the critical bridge between user intent and system execution,
accumulating user specifications into a structured sequence of operations that the Revit plugin can
reliably process. This queuing mechanism provides several essential capabilities: it allows users to build
complex specifications incrementally, provides transparency into what will be executed, enables review

and modification before processing, and ensures reliable command delivery through persistent storage.

The queue operates as a first-in, first-out (FIFO) data structure, preserving the temporal order of user
specifications (Figure 14). This ordering is crucial because later commands may depend on earlier ones;
for example, a modification command assumes that a creation command has already been executed. The
queue manager maintains this temporal integrity while also providing flexibility for users to review and

potentially reorder commands before execution.

Command Queue

1. select_template - {"template name": "2BR_1BA apartment™} Clear Queue
(From: Create a 2 bedroom apartment)
Save Queue
2. set_area — {"total_area": T5}
(From: area 75sgm)

3. set_building code - {"building code": "slovenia code"}
(From: Use Slovenia building code)

4. lines_to_walls - {"wall height": 2.5, "wall type":!: "Basic

Figure 14: Command Queue in the External Ul

Each command in the queue is represented as a structured object containing multiple fields that

completely describe the operation. The command identifier (UUID) ensures global uniqueness across

38 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

all sessions and systems. The timestamp records when the command was created, valuable for debugging
and audit purposes. The command type field (CREATE APARTMENT, MODIFY ELEMENT,
APPLY BUILDING CODE) determines how the Revit plugin will process the instruction. The
parameters object contains all necessary data for command execution, with its structure varying based
on command type. The status field tracks command lifecycle (pending, processing, completed, error),

enabling progress monitoring.

class CommandQueue:
def __init_ (self):
self.commands = []
self.queue_file = " BIMModelling/queue/commands.json”

def add_command(self, command_type, parameters)
"""Add a new command to the queue™""
command = {
'id": str(uuid.uuid4()),

uuuuuu

uuuuuuuuuuu

"type': command_type,
'parameters’: parameters,
"status': 'pending’

elf.commands. append(command)

def save_queue(self):

"""Save the command queue to JSON file for Revit processing"""
queue_data = {
'version': "1.8°,
eated datetime.now().isoformat(),

}
with open(self.queue file, 'w") as f:
Jison.dump(queue_data, f, indent=2)

Figure 15: Command Queue Serialization

The queue persistence mechanism ensures reliability even in the face of application crashes or system
interruptions. When users click "Save Queue," the entire command collection is serialized to JSON
format and written to a designated file in the queue directory. This file-based approach provides several
advantages over in-memory storage: commands survive application restarts, the queue can be inspected
and potentially modified outside the application, and multiple Ul instances can potentially share the

same queue file.

The JSON serialization process carefully preserves all command details while ensuring compatibility
with the Revit plugin's deserialization requirements. The serializer handles special cases like floating-
point precision, character encoding for international building codes, and proper escaping of user-
provided text that might contain special characters. Version information embedded in the JSON structure

ensures forward and backward compatibility as the system evolves.

Queue management also includes safety features to prevent common errors. The system prevents

duplicate commands by checking for identical operations already in the queue. It validates command

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 39
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

sequences to ensure logical ordering (can't modify an element before creating it). It warns users about
potentially conflicting commands that might produce unexpected results. These safety checks help users

avoid frustration and ensure successful model generation.
4.4 FILE-BASED COMMUNICATION SYSTEM

The file-based communication system provides the essential link between the External User Interface
and the Revit plugin, enabling reliable data exchange without the complexity and potential issues of
network-based protocols. The system implements a bidirectional data flow from the UI to Revit, with

status information flowing back through a separate file-based channel.

The choice of file-based communication over network protocols stems from several critical
requirements identified during system design. Enterprise environments often restrict network
communications, requiring complex firewall configurations for socket-based systems. File operations,
in contrast, work reliably in all environments without special permissions or configuration. The
approach also simplifies debugging, as communication data persists in files that can be examined when
troubleshooting issues. Finally, the atomic nature of file operations ensures data integrity, avoiding the

partial message delivery issues that can plague network protocols.
44.1 COMMUNICATION PROTOCOL STRUCTURE

The communication protocol defines a structured JSON format that ensures reliable and unambiguous
data exchange between system components [23]. This protocol has been designed with emphasis on
clarity, extensibility, and error resilience, incorporating versioning support and comprehensive metadata

to facilitate debugging and system evolution.

o t1.en,
1 "2825-08-06T14:30:00",
": "sess_20250806_143808",

"status™: “pending”

Figure 16: Communication Protocol JSON Structure

40 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The protocol structure follows a hierarchical organization that separates metadata from operational data.
At the root level, version information ensures compatibility between different releases of system
components. The timestamp provides global ordering across all communications, essential for
understanding system behaviour during troubleshooting. The session identifier groups related

operations, enabling tracking of multi-step workflows and user sessions.

The command array contains the actual operations to be executed, with each command fully self-
contained. This design ensures that commands can be processed independently, improving system
resilience. If one command fails, others can still be processed successfully. Commands can be retried
without needing context from previous operations. The processing order can be optimized if

dependencies permit.

Parameter encoding within commands follows strict conventions to prevent ambiguity. Numerical
values always include unit specifications, eliminating confusion between metric and imperial
measurements. String values use UTF-8 encoding to support international characters in building codes
and user-provided text. Boolean flags explicitly use true/false rather than truthy/falsy values.

Enumerated values (like command types) use predefined string constants rather than numeric codes.

The protocol includes extensibility provisions that allow for future enhancements without breaking
existing implementations. Unknown fields are preserved but ignored, allowing newer Ul versions to
include additional data that older Revit plugins safely skip. The version field enables conditional
processing based on protocol capabilities. Optional fields can be added to commands without breaking
existing processors. This forward-thinking design ensures the system can evolve without requiring

synchronized updates of all components.

4.4.2 FILE MONITORING SYSTEM

The file monitoring system enables the Revit plugin to detect and respond to new command files without
requiring constant polling or user intervention. This reactive approach minimizes resource consumption
while ensuring rapid response to user commands. The implementation leverages operating system file

system events for efficient monitoring.

The monitoring system initializes during plugin startup, establishing a watch on the designated queue
directory. The FileSystemWatcher component [31], provided by the .NET framework, registers for
specific file system events that indicate new commands are available. The watcher configuration is
carefully tuned to balance responsiveness with stability, filtering for JSON files only to avoid false

triggers from temporary files or other data types.

Event debouncing prevents multiple triggers from a single file write operation. When large files are

written, the operating system may generate multiple change events as buffers flush to disk. The

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 41
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

monitoring system implements a small delay (typically 100-500 milliseconds) after detecting a change
before attempting to read the file. This delay ensures the file write is complete and the file is not locked

by the writing process.

The file reading process includes robust error handling to manage various failure scenarios. If a file is
locked (still being written), the system implements exponential backoff retry logic. If a file is corrupted
or contains invalid JSON, the system logs the error and continues monitoring for valid files. If the queue
directory becomes unavailable (network drive disconnection), the system attempts to reestablish

monitoring when the directory returns.

The monitor also implements file cleanup to prevent directory bloat over time. After successfully
processing a command file, the system either deletes it or moves it to an archive directory, depending

on configuration.

Performance optimization ensures the monitoring system doesn't impact Revit's primary operations. File
system events are processed asynchronously, preventing Ul freezes during file operations. The
monitoring thread runs at a lower priority than Revit's main thread. Resource-intensive operations like
JSON parsing are deferred until necessary. The system implements circuit breakers that temporarily

disable monitoring if error rates exceed thresholds.

4.4.3 STATUS UPDATE MECHANISM

The status update mechanism provides feedback from the Revit plugin to the Ul, informing users about
command processing progress and results. This feedback channel operates independently from the

command channel, implementing a simple but effective file-based protocol for status communication.

Status updates follow a structured format that provides comprehensive information about operational
results. Each status update includes the command identifier, linking it to the original command. The
status field indicates the current state (processing, completed, or error). Descriptive messages provide
human-readable information about the operation. Timestamps enable performance analysis and

debugging. Additional data specific to the operation type may be included.

The status file naming convention ensures unique identification and chronological ordering. Files are
named with the pattern status [command id] [timestamp].json, preventing conflicts and enabling easy
correlation with commands. The UI monitors the status directory for new files, reading and displaying

updates as they appear.

Status persistence provides several operational advantages over transient messaging. Status information

survives Ul restarts, allowing users to check results later. Multiple Ul instances can monitor the same

42 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

status directory. Status history can be analysed to understand system behaviour patterns. Failed

operations can be investigated using preserved status data.

The cleanup mechanism prevents the unlimited accumulation of status files. The Ul deletes status files
after displaying them to the user. Old status files are periodically purged based on age. Error status files
are preserved longer for diagnostic purposes. Archive directories can be configured for long-term status

retention if needed.

This file-based approach to status communication maintains the simplicity and reliability that
characterizes the entire communication system, avoiding the complexity of bidirectional network

protocols while providing users with the feedback they need to understand system operation.

4.5 PyREVIT PLUGIN ARCHITECTURE

The PyRevit plugin architecture represents the execution engine of the parametric generation system,
transforming structured commands from the external Ul into BIM models within Autodesk Revit.
PyRevit, an open-source rapid application development framework for Revit, was chosen as the
implementation platform [25]. This plugin serves as the bridge between user intent, expressed through
the external Ul, and the complex parametric operations required to generate building-code-compliant

apartment models.

The plugin architecture leverages PyRevit's IronPython environment, which provides seamless
integration with Revit's NET API while maintaining the development agility of Python. This dual nature
allows the system to perform computationally intensive BIM operations while maintaining readable,
maintainable code. The plugin implements a modular architecture where each major function—template
management, building code compliance, parametric generation, and element numbering—operates as
an independent but interconnected module. This modularity ensures that individual components can be
updated or enhanced without affecting the entire system, crucial for long-term maintenance and future

expansion.

The decision to implement the plugin using PyRevit rather than traditional C# Revit add-ins stems from
several strategic advantages. Development iterations are significantly faster with PyRevit's reload-on-
save capability, eliminating the compile-build-deploy cycle of traditional add-ins. The Python
ecosystem provides access to powerful libraries for JSON processing, mathematical operations, and data
manipulation. The scripting nature allows for easier customization by end users who may want to extend
functionality. Most importantly, PyRevit's infrastructure handles many low-level Revit API

complexities, allowing focus on business logic rather than boilerplate code.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 43
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The plugin operates within Revit's transactional framework, ensuring that all model modifications are
atomic and reversible. Each operation, from template loading to parameter adjustment to element
creation, occurs within managed transactions that can be rolled back if errors occur. This transactional
integrity is crucial for maintaining model consistency and preventing corruption from partially
completed operations. The plugin also implements comprehensive error handling and logging, providing

detailed feedback about operation success or failure through the status update mechanism.
4.5.1 PyREVIT PLUGIN INTERFACE

The PyRevit plugin extends Revit's native interface with a comprehensive set of tools specifically
designed for parametric apartment generation. This interface provides users with two parallel
workflows: a fully automated path using external Ul commands, and a semi-manual path using the
ribbon interface directly within Revit. Both approaches leverage the same underlying parametric engine

while offering different levels of control and customization.

4.5.1.1 RIBBON INTERFACE DESIGN

The custom ribbon tab, labeled "Parametric BIM Generation," integrates seamlessly with Revit's
standard interface, appearing as a dedicated tab in the ribbon bar. The interface design follows Revit's
established visual language while organizing tools according to the logical workflow of apartment
generation.

Add Wall Cycle Cycle Cycle Remaove
Labels Doors Walls Windows Labels

Process All Select Adjust Room Lines to Place £ License
C F Windo

nands Template 3 Walls

00 Server 01_Template Tools 02 _Parameter Tools 03_Wall Tools 0 ot 06_Selection Tools 07_Cleanup Tools 08 _Info 09_Room Tools

Figure 17: Ribbon Interface of Parametric BIM Generation using PyRevit

The ribbon is organized into seven distinct panels, each representing a stage in the generation process

(Figure 17):

e Generation Panel - Primary controls for initiating the generation process

e Parameter Panel - Tools for adjusting room dimensions and spatial relationships
e Wall Generation Panel - Conversion of template lines to 3D walls

e Door and Window Panel - Automated and manual opening placement

e Seclection Tools Panel - Element cycling and selection utilities

e Room Tools Panel - Room creation and data management

e Additional Tools Panel - Utility functions and cleanup operations

Each panel uses visual hierarchy to guide users through the workflow. Primary actions feature large split

buttons, while secondary functions use standard push buttons. Icons are selected to be immediately

ii.

iil.

1v.

V1.

Vii.

viii.

iX.

44 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

recognizable, using familiar architectural symbols where possible. Tooltips provide detailed

explanations of each function, including expected inputs and outputs.

4.5.1.2 BUTTON FUNCTIONALITY OVERVIEW
Each button in the ribbon interface triggers specific parametric operations while maintaining the
integrity of the overall model. The functionality is designed to be both powerful and forgiving, with

operations that can be undone or modified as needed.

Process All Commands Button: This primary execution button serves as the main bridge between
the external Ul and Revit. This is the Master Button to carry out all the modelling commands at
once. When activated, it reads the JSON command queue file created by the external Ul, interprets
the commands, and executes them sequentially.

Select Template Button: Opens a visual template browser displaying available apartment
configurations. Each template shows its configuration code (IBR_1BA, 2BR 2BA, etc.).

Adjust Room Sizes Button: Using this button, users will have the option to manually select the
total area of the Apartment. First, it will ask which building code the user would like to follow. A
total of 10 countries are included for the users to select from. After that, the user can select the total
Area. Depending on the selection of the total area, the Global parameters of the Revit file will be
adjusted automatically to comply with the building code and the total area.

Lines to Wall Button: Converts the template's single-line representations into full 3D walls. The
button presents a dialog for wall type selection, showing Revit's loaded wall families with their
thicknesses and materials. Users can also set the wall height after selecting the Revit family.

Place Doors/Windows Buttons: Clicking these buttons, the user can automatically place all the
doors and the windows inside the template. It allows users to select pre-loaded Revit families for
doors and windows and place them. The door’s positions are predefined as circles, and the window’s
positions are predefined as ellipses in the templates. The button replaces all the circles with Revit
doors and all the ellipses with Revit windows. This button also places numbers on each door and
window for selection with the external UI.

Room Generation Button: Creates Revit room elements, automatically detecting boundaries and
calculating areas. The tool names rooms based on their template designation and actual area,
creating a standardized naming convention that facilitates scheduling and documentation.

Cycle Doors, Cycle Walls & Cycle Windows Button: These three buttons’ functionalities are to
select the elements of the Revit file. These functionalities focus more on the external Ul rather than
on using Revit. A user who is not familiar with Revit modelling can use these three buttons to select
the elements in Revit and can modify them.

Remove Label Button: With this button, a user can instantly delete all the labels marked on each
element (Walls, Doors & Windows).

License Button: This button shows basic information about the plugin and the Author.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 45
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.2 USER WORKFLOW DEMONSTRATION

The typical workflow for creating a parametric apartment model follows a logical progression from
abstract template to detailed BIM model. This section demonstrates the step-by-step process a user
would follow when using the buttons inside Revit, without relying on the external UL

Add Wall Cycle Cycle Cycle Remaove Room
Labels Doors Walls Windows Labels Generation

Process All Select dj oo Lines to Place & License
r \ [ela}

nands Template S Walls

00_Server 01_Template Tools 02_Parameter Tools 03_Wall Tools 0 [l D6_Selection Tools 07_Cleanup Tools 08_Info 09_Room Tools

Figure 18: Ribbon Interface of Parametric BIM Generation using PyRevit

4.5.2.1 STEP 1: TEMPLATE SELECTION

The user begins by clicking the 'Select Template' button, which opens the template browser. They can
either browse visually through the available options or use filters to narrow the selection. For example,
selecting "2 Bedrooms" filters the display to show only 2BR templates. Upon selection, Revit loads the
template file, displaying the single-line geometry in the plan view. (Figure 19)

o P
o

Figure 19: Example Template consisting 2d lines with Global Parameters

The template appears as a simplified line drawing with circles indicating door positions and ellipses
showing window locations. Global parameters are loaded simultaneously, appearing in the Properties

palette for reference.

4.5.2.2 STEP 2: BUILDING CODE SELECTION
Before adjusting parameters, the user selects the appropriate building code. When the user clicks on the
‘Adjust Room Sizes’ button, a list of building codes appears first to select from (Figure 20). This

selection immediately applies the minimum requirements to all relevant parameters. If the current

46 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

template violates any requirements, warning symbols appear next to affected parameters, and the system

suggests the minimum adjustments needed for compliance.

= Select Building Code = [} b

= [

Australia

Bangladesh
France
Germany
Netherlands
Norway
Portugal
Slovenia
Spain

United States

Select

Figure 20: Building Code Options to select

4.5.2.3 STEP 3: PARAMETER ADJUSTMENT
After selecting the building codes, the small UI opens, and asks the user to fill in the total area of the
Apartment (Figure 21).

Enter total apartment area in square meters (m2):

75

Figure 21: Total Apartment Area Selection

|\ Calculated room dimensions for 75.0 m2 apartment:
Building Code: Bangladesh
Scale Factor: 1.24

Master Bedroom: 4.2m x 3.5m = 14.3 m2
Bedroom 2: 3.4m x 3.4m = 11.6 m2
Bedroom: 3.4mx 34m = 11.6 m2

Living Room: 3.7m x 3.7m = 13.7 m2
Kitchen: 2.8m x 2.5m = 6.9 m2
Bathroom: 2.6m x 1.7m = 4.3 m2

Total Room Area: 62.3 m2
Circulation Area: 12.7 m2 (17%)

Detected 6 rooms in your model.

Apply these dimensions?

pyRevit 5.2.0.25181+1332

Figure 22: Automatic Adjustment of Room sizes

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 47

Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

After that, the interface displays a dialog that includes a "Balance Areas" function that automatically
adjusts room sizes proportionally to achieve a target total area while maintaining all building code
requirements (Figure 22). This intelligent distribution considers room importance hierarchies, ensuring

living spaces and bedrooms receive priority over utility spaces.

4.5.2.4 STEP 4: WALL GENERATION
With parameters finalized, the user proceeds to wall creation by clicking the ‘Lines to Wall’ button. The
resulting dialog shows available wall families from the current project (Figure 23). After selecting

appropriate types for the walls and setting the wall height (Figure 24), the user clicks "Generate Walls."

§= Select Wall Type

% ||

Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall
Basic Wall

: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-
: Wall-

Ext_102Bwk-50Air-45Ins-100DBIk-12P
Ext_102Bwk-504ir-45Ins-1000B1k-12P_Plinth
Ext_102Bwk-75Ins-100Blk-12P_Banding
Ext_102Bwk-75Ins-100LBIk-12P
Ext_102Bwk-75Ins-140BIk-12P_SoldierBanding
Ext_215Bwk
Ext_22Rdr-100B1k-50Air-30Ins-100LEIk-12P
Ext_33Rsc-50Air-100Ins-140BIk-12P
Ext_50Cdg-100Ins-200Cdg
Fnd_300Con_Footing

Frnd_440Blk

Fnd_750Con_Footing

Int_12P-100Bk-12P

Partn_12P-TOMStd-12P
Partn_12P-755td-12P
Partn_25Gwb-70MStd-25Gwb
Partn_30Gwb-T70MStd-30Gwh

Ret_300Con

Site_215Bwk_w-Footing
Subs_100BIk-75Can-100B1k

Curtain Wall : Curtain_Wall-Empty
Curtain Wall : Curtain_Wall-Exterior_Glazing
Curtain Wall : Curtain_Wall-Storefront

Select

Figure 23: Selection of Wall Family

3000mm (3m) - Default
Custom

3500mm (3.5m)
A000mem (4m)
2700mm (2.7m)

Select

Figure 24: Selection of Wall Height

48 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.

Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The system then converts each line in the template to a 3D wall, automatically handling intersections

and joins. The transformation is immediate and visual, with the 3D view updating to show the full wall
geometry (Figure 26).

/_qu -

L9

L15!

WL12 WL1

WL2 WL4

L7

_ L 10 | I

Figure 25: Generated BIM Model- Plan View

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 49
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Figure 26: Generated BIM Model- Perspective view

4.5.2.5 STEP 5: OPENING PLACEMENT
The user clicks Place Doors to initiate automatic door placement. First, a list of available Revit door

families is visible for the client to select from (Figure 27).

5= Select Door Family — m] X

% ||

Doors_ExtDbl_Flush : 1510x2110mm
Doors_ExtDbl_Flush : 1810x2110mm

Doors_IntSgl : 1010x2110mm

Doors_IntSgl : 810x2110mm

Doors_IntSgl : 910x2110mm
M_Door-Interior-Single-2_Panel-Wood : 800 x 2000mm
M_Door-Interior-Single-2_Panel-Wood : 750 x 2000mm
M_Door-Interior-Single-2_Panel-Weod : 900 x 2000mm
M_Door-Interior-Single-6_Panel-Wood : 600 x 2000mm
M_Door-Interior-Single-6_Panel-Wood : 750 x 2000mm
M_Door-Interior-Single-6_Panel-Wood : 900 x 2000mm

Select

Figure 27: Selection of Door Family

The system analyzes the wall configuration and places doors at the circular markers in the template

(Figure 28).

50 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Figure 28: Door placement in the BIM model

Similarly, Place Windows analyzes exterior walls and elliptical markers to position windows. Similar
to the door, users can select from the list of loaded window families and can place all the windows

automatically (Figure 29).

Figure 29: Window Placement in the BIM Model

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 51
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.2.6 STEP 6: ROOM CREATION

The final step involves clicking Room Generation to create room elements. The system automatically
detects room boundaries formed by the walls and places room elements at the center of each space
(Figure 30). Rooms are named according to their function and actual area (e.g., "Master Bedroom - 12.5

m?"), providing immediate verification that spatial requirements have been met.

L15

MasterBedroom
11 m2

Kitchen

4 m? [WiLe

WLSWL3 |

Living Room

15 m? Bedroom?2

8m? b

Figure 30: Room placement

4.5.2.7 STEP 7: SELECTION CYCLE BUTTONS

From all the created Walls, Doors, and Windows, some might have some orientation problems. Like
some windows might need to swing open outside, not inside. Some doors needed to be flipped. Some
walls needed to be flipped, or the family type needed to be changed. Though these can easily be done in
Revit without the help of this PyRevit plugin, as these are all Revit families, a user who has no

experience in Revit can use the Selection Cycle buttons to select, flip, or change the family types.

The ‘Cycle Doors’, ‘Cycle Walls’ & ‘Cycle Windows’ buttons have the same functionality. Clicking on
the ‘Cycle Doors’ button, the user will see a small UI (Figure 31) to select doors by clicking the ‘Next’
button, can flip the door front-back & left-right, and can change the family type of the selected door.

The functionality of this button grows exponentially when the external Ul gives any commands to make

any modifications.

52 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Door 5 of 5

» Filter / Ta

Typ
Change Family Type Flip Facing (Front-Back)
Flip Hand (Left-Right)

Figure 31: Element selection cycle for modification purposes
4.5.3 TEMPLATE-BASED DESIGN SYSTEM

Templates form the foundational framework for parametric apartment generation, providing pre-
configured spatial layouts that can be dynamically adjusted to meet specific requirements. The template
system represents a crucial architectural decision that balances flexibility with standardization, enabling
rapid generation while maintaining design quality and code compliance. Each template encapsulates not
just geometry but also the relationships, constraints, and parameters that define a functional apartment

layout.

The template concept emerged from the recognition that most apartment designs follow established
patterns based on bedroom count, bathroom configuration, and local architectural conventions. Rather
than generating layouts from scratch, a computationally complex and error-prone process, the system
leverages these patterns as starting points, adjusting them parametrically using the Global Parameter

system of Revit to meet specific requirements.

Templates are intrinsically linked to the Process Commands Button in the PyRevit interface. When
this button is activated, the system reads the command queue JSON file and extracts the apartment
configuration (e.g., 2BR_2BA) specified by the user. This configuration key triggers the template
selection mechanism, which loads the corresponding template file as the foundation for generation. The
template provides the spatial framework, while the commands provide the specific dimensional and

compliance requirements that drive parametric adjustments.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 53
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The Select Template Button provides direct access to the template library, enabling manual template
selection independent of command processing. This functionality proves valuable for exploring different
layout options or when users want to override automatic template selection. The visual browser activated
by this button displays template previews, making it easy to understand the spatial organization of each

option before selection.

4.5.3.1 TEMPLATE ORGANIZATION & NAMING CONVENTION
The template library follows a systematic organization that facilitates both automated selection and
manual browsing. Templates are stored as Revit files (.rvt) in a hierarchical directory structure that

mirrors their classification:

Templates/

— 2BR_2BA_Standard.rvt (70-85 m?)

rvt (75-98 m?)
BA_Corner.rvt (75-85 m?)
BA_Penthouse.rvt (85-188 m?)
BA_Standard.rvt (85-18@ m?)
_Family.rvt (98-118 m?}
BR_2BA_Luxury.rvt (188-128 m*)

Figure 32: Template naming convention

The naming convention follows a strict pattern: {#BR} {#BA} [variant].rvt, where:

e {#BR} indicates the number of bedrooms (1BR, 2BR, 3BR)
e {#BA} indicates the number of bathrooms (1BA, 2BA, 3BA)

e [variant] optionally specifies special configurations

This systematic naming enables automatic template selection based on user requirements while
providing flexibility for specialized variants. The base templates (without variants) serve as defaults,

while variants offer optimized solutions for specific contexts, such as the area of the apartment.
Each template contains carefully structured elements that enable parametric control:

Single-Line Wall Representations: Walls are initially represented as single lines in plan view,
which significantly simplifies parametric relationships and computational overhead. These lines
serve as centerlines for 3D wall generation, with wall thickness applied symmetrically during the

conversion process.

ii.

i.

ii.

iii.

54 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Symbolic Markers for Openings:

e Circles represent door locations, with the circle diameter correlating to the rough opening width.

o Ellipses indicate window positions. The hexagonal shape distinguishes windows from doors
even in complex layouts.

e Rectangles define room boundaries and functional zones, providing the framework for space

allocation and area calculations.

4.5.3.2 GLOBAL PARAMETERS & THEIR ARCHITECTURAL SIGNIFICANCE
Global Parameters in Revit serve as the control mechanism for template flexibility, allowing dynamic
adjustment of spatial dimensions while maintaining geometric relationships. Each template includes a

comprehensive set of parameters that control every aspect of the layout's geometry.
Each template includes a comprehensive parameter set controlling all dimensional aspects.

Room Dimension Parameters:

o RoomWidth MasterBedroom (default: 3.5m, min: 3.0m)
e RoomLength MasterBedroom (default: 4.0m, min: 3.0m)
e RoomWidth Bedroom?2 (default: 3.0m, min: 2.7m)

e RoomLength Bedroom?2 (default: 3.5m, min: 2.7m)

e RoomWidth LivingRoom (default: 4.5m, min: 3.5m)

e RoomLength LivingRoom (default: 5.0m, min: 3.5m)
e RoomWidth Kitchen (default: 3.0m, min: 2.0m)

e RoomLength Kitchen (default: 3.5m, min: 2.0m)

e RoomWidth Bathroom (default: 2.0m, min: 1.5m)

e RoomLength Bathroom (default: 2.5m, min: 1.5m)
Vertical Parameters:

e WallHeight (default: 3.0m, range: 2.5m - 4.0m)

e FloorThickness (default: 0.3m)

o CeilingOffset (default: 0.0m)

Opening Parameters:

e DoorWidth Main (default: 0.9m, min: 0.8m)

e DoorHeight Main (default: 2.1m, min: 2.0m)

e DoorWidth Interior (default: 0.8m, min: 0.7m)

e DoorHeight Interior (default: 2.1m, min: 2.0m)

e WindowWidth Standard (default: 1.2m, min: 0.6m)

e WindowHeight Standard (default: 1.5m, min: 1.0m)

e WindowSillHeight Standard (default: 0.9m, min: 0.8m)

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 55
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

These Global parameters are significant for this entire process, as these are adjusted following the user’s
requirements, regardless of using external Ul or Revit’s plugin internally. These parameters are assigned
to the dimensions of each of the rooms. So, automatically adjusting the Global parameter, users can
adjust the room sizes as well. And the Global parameters can be adjusted automatically using the

External Ui and the PyRevit Plugin’s buttons.

4.5.3.3 PARAMETRIC RELATIONSHIPS & CONSTRAINTS

Templates implement sophisticated parametric relationships that maintain design integrity during
dimensional adjustments. These relationships ensure that as individual parameters change, the overall
design remains functionally and aesthetically coherent. The constraint system operates at multiple

levels: geometric, functional, and aesthetic.

Proportional Relationships: Aesthetic proportions are preserved through parametric formulas:
IF (RoomWidth MasterBedroom < 3.0) THEN

RoomLength MasterBedroom = RoomWidth MasterBedroom * 1.3

ELSE

RoomLength MasterBedroom = RoomWidth MasterBedroom * 1.15

These relationships maintain pleasing room proportions even as dimensions change. Rooms that become
too narrow automatically become longer to maintain usable area, while rooms that are wide enough

maintain more balanced proportions.

4.5.3.4 TEMPLATE SELECTION PROCESS (MANUEL VS AUTOMATIC)
The system supports two distinct template selection methods, each optimized for different use cases and

user preferences .

i. Automated Selection via External UIl: When processing commands from the external Ul, the

system employs a sophisticated scoring algorithm to select the optimal template:

ii.

iii.

56 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

def calculate_template_score(template, requirements):

score = @

if templ drooms == requirements.bedrooms:

plate.be

score += l1@a

if template.bathrooms == requirements.bathrooms:
re

p
score += 5@

area_difference = abs(template.default_area - requirements.target_area)
area_score = max(®, 188 - area_difference

score += area_score * 8.5

if requirements.building_code in template.validated_codes:

score += 3@

if requirements.corner_unit and template.is_corner:
score += 25
if requirements.accessibility and template.has_accessible_ features:

score += 48

return score
Figure 33: Template Selection Algorithm

This scoring system ensures that the selected template requires minimal adjustment to meet

requirements, reducing processing time and potential parameter conflicts.

ii. Manual Selection via Revit Interface: The visual template browser, activated by the Select
Template button, presents template names as a list. Configuration code (e.g.,

"2BR_2BA_Standard")

4.5.3.5 TEMPLATE VALIDATION & QUALITY ASSURANCE
Before inclusion in the system library, each template undergoes rigorous validation to ensure it meets
quality standards and will function correctly within the parametric generation system. This validation

process combines testing with manual review, verifying both technical accuracy and design quality.

Manual Geometric Validation: Geometric checks verify the physical integrity of the template:

e Enclosure Completeness: All spaces are fully bounded by walls with no gaps

e Overlap Detection: No room boundaries overlap or intersect inappropriately

e Circulation Verification: All rooms are accessible through proper circulation paths

e Minimum Clearances: Required clearances for doors, windows, and circulation are maintained
Automatic Geometric Validator: This computational geometry algorithm is used to detect issues
that might not be visually apparent but could cause generation failures. For instance, it identifies
walls that are close but not quite touching, which could create gaps in the 3D model.

Parametric Testing: The parametric validation system tests templates across their full range of
adjustment:

o (Global Parameters are systematically varied from minimum to maximum values

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 57
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

e Fach configuration is checked for geometric validity and constraint satisfaction
e Extreme combinations are tested to identify edge cases

e Performance is measured to ensure generation completes within acceptable timeframes

This exhaustive testing ensures templates remain valid across all possible parameter combinations users
might specify. The system generates hundreds of variations from each template, validating that all

produce viable apartment layouts.

iv. Building Code Pre-Compliance: Templates are designed to meet the most restrictive requirements
across all supported building codes:
e Room dimensions exceed the maximum minimums across all codes
e (Circulation widths accommodate the strictest accessibility requirements

e (Ceiling heights meet the tallest requirements

This conservative approach ensures that code-specific adjustments typically involve increasing
dimensions rather than fundamental layout changes. Templates serve as compliant starting points that

can be refined for specific jurisdictions rather than requiring major restructuring.

v. Quality Assurance Review: Manual review by architectural professionals ensures design quality:
e Layouts are evaluated for livability and functionality
e Furniture placement zones are verified for standard furniture sizes
e Natural light distribution is assessed for all habitable rooms
e Privacy considerations are checked for bedroom and bathroom placement

e Opverall aesthetic quality is evaluated

This human review complements automated validation, ensuring templates not only meet technical
requirements but also represent good architectural design. Templates that pass all validation stages are
tagged with metadata describing their characteristics, optimal use cases, and any special considerations

for their application.

4.54 BUILDING CODE COMPLIANCE SYSTEM

The building code compliance system represents one of the most innovative aspects of this PyRevit
plugin, transforming traditionally manual compliance checking into an automated, intelligent process.
This system ensures that every generated apartment model meets the specific regulatory requirements
of the selected jurisdiction, addressing a critical gap in existing parametric design tools. The compliance
system operates throughout the generation process, from initial template selection through final

validation, continuously ensuring that all design decisions respect applicable regulations.

58 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The integration of building code compliance directly into the generation process, rather than as a post-
generation check, fundamentally changes how compliant designs are created. Traditional workflows
require architects to manually verify compliance after design completion, often necessitating significant
revisions when violations are discovered. This system inverts that process, using compliance

requirements as generative constraints that guide the design from the outset.

4.5.4.1 BUILDING CODE DATA COLLECTION & PROCESSING

The foundation of the compliance system rests on a comprehensive database of building code
requirements extracted from official regulatory documents. This database represents careful research,
involving the systematic analysis of building codes from ten different countries and their transformation

into computationally processable formats.
i. Data Collection Methodology:

The data collection process began with identifying authoritative sources for each country's building

codes:

o Slovenia: Official Gazette of the Republic of Slovenia (Uradni list RS), specifically the Rules
on minimum technical requirements for the construction of residential buildings and dwellings

o USA: International Building Code (IBC) 2021 and International Residential Code (IRC) 2021
[32] from the International Code Council

e Germany: DIN 18011 (Surface areas and volumes of buildings) and DIN 18040 (Construction
of accessible buildings)

o France: Code de la Construction et de 'Habitation, particularly Articles R111-1 through R111-
17

e Spain: Codigo Técnico de la Edificacion (CTE), Document DB-SUA (Safety of Use and
Accessibility)

e Australia: National Construction Code (NCC) Volume Two, Class 1 and Class 2 buildings

e Netherlands: Bouwbesluit 2012, Chapter 4 (Technical building regulations for usability)

e Norway: Direktoratet for byggkvalitet (DiBK) Building Technical Regulations (TEK17)

e Portugal: Regulamento Geral das Edificagcdes Urbanas (RGEU), Decree-Law n.° 38382

o Bangladesh: Bangladesh National Building Code (BNBC) 2020, Part 3, Chapter 1 (Building
Planning)

From these comprehensive documents, typically hundreds of pages each, residential space requirements
were extracted and categorized. This extraction focused on quantifiable requirements that could be

automatically verified:

e Minimum room dimensions (width, length, area)

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 59
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

e (Ceiling height requirements (general and room-specific)

e Natural lighting and ventilation standards (window-to-floor ratios)

e Accessibility requirements (door widths, turning circles, approach spaces)

e Circulation and egress specifications (corridor widths, stair dimensions)

e Special provisions for different room types (kitchens, bathrooms, bedrooms)

ii. Data Structuring and Standardization:

The extracted requirements were transformed into a hierarchical JSON structure (Figure 34) that

preserves the semantic meaning while enabling efficient computational processing:

{
"country”: "Bangladesh"
“code_name": "Bangladesh Mational Building Code (BMBC)",
"version": "2@28",
"last_updated”: "2828-82-28",
"Housing and Building Research Institute”,
1_requirements": {

"min_ceiling_height": 2.75,
"min_ceiling_he t_kitchen": 2.4,
"min_ceiling_he t_bathroom": 2.4,
"min_door_width

"min_door_height": -
"min_corridor_width": .9
)
“rooms": {
"master_bed

“min_ar 9.5,
"min_width": 2.75,

"min_length": 3

"window_a .1,
es"” room should be minimum 9.5 sqm"
"bedroom™: {
"min_a ~8 Tl
"min_width": 2.4,

1
"living room™: {
"min_area":
"min_width™:
"min_length™:
"window_a ": @8.15,
“can_combine_with_dining": true
}
"acce
"required_for_public_housing™: true,
"wheelchair_accessible_unit_ratio™: .85,
"accessible_bathroom_min_area": 3.7,
"accessible_door_min_width": 8.9,
"turning_circle_diameter": 1.5

Figure 34: Building Code JSON Structure

This standardized structure enables consistent processing across different building codes despite their
varying formats and requirements. Each code file follows the same schema, allowing the compliance

engine to process any jurisdiction's requirements using the same algorithms.

ii.

jii.

60 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.4.2 BUILDING CODE VARIATIONS & CHALLENGES

The standardization process revealed significant variations between building codes, presenting

numerous challenges that the system had to address:

Measurement System Variations: While most countries use metric measurements, the USA's

continued use of imperial units required careful handling:

e The system internally uses metric units for all calculations

e Imperial measurements in US codes are converted during data import
e User interfaces display units according to the selected building code

e Conversion precision is maintained to avoid rounding errors affecting compliance

Regulatory Philosophy Differences: Building codes embody different regulatory philosophies that

affect how requirements are expressed:

o Prescriptive Codes (Germany, France): Specify exact dimensional requirements

o Performance-Based Codes (Australia, Netherlands): Define outcomes rather than methods

o Hybrid Approaches (USA, Slovenia): Combine prescriptive and performance elements

The system handles these differences by extracting the most specific requirements available and

inferring specific dimensions from performance criteria where necessary.

Cultural and Climatic Adaptations: Regional variations reflect cultural preferences and climatic

necessities:

special provisions": {

"Slovenia™: {
‘mandatory_storage_room”: true,
‘min_storage_area”: 2.8,
"bicycle_storage_required”: true

Is

"Germany": {

'kellerraum_required™: true,
"spielplatz_proximity™: 186

.’ ¥

"Bangladesh™: {
"verandah_recommended™: true,
"servant_gquarter_provisions™: true,

‘prayer_room_consideration”: true

: ¥

"Norway"”: {
‘mudroom_required”: true,
"underfloor_heating_zones™: true

Figure 35: Building Code Cultural Requirements

These cultural requirements are incorporated as additional generation constraints when

corresponding building code is selected.

the

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 61
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.4.3 COMPLIANCE CHECKING ALGORITHM

The compliance checking algorithm operates as a multi-stage process that validates and adjusts design
parameters throughout generation. This algorithm represents the technical core of the compliance
system, implementing sophisticated logic to ensure regulatory adherence while maintaining design

quality.
i. Stage 1: Requirement Loading and Parsing

When a building code is selected, the compliance engine loads the corresponding JSON file of the
building code and parses it into an internal representation optimized for rapid querying. The parsing

process creates multiple data structures:

e A flat dictionary of minimum requirements for lookup performance
e A hierarchical tree structure preserving requirement relationships
e An index of requirements by room types for targeted validation

e A priority queue of requirements ordered by restrictiveness

This multi-structure approach enables different validation strategies depending on the operation being

performed, optimizing both performance and accuracy.
ii. Stage 2: Parameter Validation and Adjustment

The parameter validation stage systematically compares template parameters against building code

requirements, identifying violations and calculating necessary adjustments:

The validation algorithm implements a sophisticated adjustment strategy that considers the cascading
effects of parameter changes. When a room dimension falls below the minimum requirement, the system
must decide how to adjust it while maintaining overall design coherence. The algorithm considers

multiple factors:

e The magnitude of the violation (how far below the minimum)
e Auvailable space in adjacent areas

e Impact on total area constraints

e Maintaining proportional relationships

e Preserving circulation paths
For example, if a bedroom width of 2.5m violates a 2.7m minimum, the algorithm might:

e Increase the bedroom width to 2.7m
e Reduce an adjacent room to compensate

o Adjust the overall building footprint if necessary

62 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

e Recalculate all dependent parameters

4.5.4.4 COMPLIANCE REPORTING & DOCUMENTATION
The compliance system generates comprehensive reports (Figure 36) documenting all validation checks

and adjustments, providing transparency and accountability in the compliance process:

{
"compliance_report™: {
"project_id": “APT_2825_s8e1",
"timestamp": "2825-82-86T15:45:88",
"building_code™: "Bangladesh”,
"overall_status”: "COMPLIANT",
"summary”: {
"total_checks”: 47,
"passed”: 43,
"adjusted”: 4,
"failed": @
"checks_performed™: [
{
“category”: "Room Dimensions”,
“status™: "ADJUSTED",
“details": [
{
"room”: "MasterBedroom"”,
"requirement”: "min_area »= 9.5
"original“: 9.e,
"adjusted”: 9.5,
"status™: "ADJUSTED™
¥
]
3
I,
"certification™: {
"compliant™: true,
"signature”: "System Generated”,
"date": "2825-82-86"
}
1

Figure 36: Compliance Report Generation
These reports serve multiple purposes:

e Documentation for regulatory approval
e Record of design decisions for project files
e Debugging information for system operators

e [earning data for system improvement

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 63
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.5 PARAMETRIC ROOM GENERATION

The Parametric Room Generation Workflow represents the core intelligence of the system's space
allocation mechanism, dynamically adjusting room dimensions to satisfy both user-specified total area
requirements and mandatory building code constraints. This sophisticated workflow transforms abstract
area specifications into precisely dimensioned spatial layouts through an optimization algorithm that
balances multiple competing objectives: achieving the target total area, maintaining code compliance,
preserving architectural proportions, and ensuring functional room relationships. The system
implements this complex negotiation through the Adjust Room Sizes button, which serves as the

parametric engine driving template transformation.

4.5.5.1 BUILDING CODE INTEGRATION & MINIMUM AREA EXTRACTION

The workflow begins by loading comprehensive building code data from JSON files stored in the
system's data directory. Each building code file contains structured requirements for ten supported
countries, encoding minimum room areas, corridor widths, ceiling heights, and other spatial constraints
extracted from official regulatory documents. The system dynamically discovers available building

codes at runtime, ensuring that new codes can be added without modifying the core implementation.

The code parser extracts room-specific minimum areas through a sophisticated mapping mechanism that
reconciles differences in regulatory terminology. Building codes use varied nomenclature—"master

nmn

bedroom," "primary bedroom," or "hauptschlafzimmer" (German for Master Bedroom), which the
system maps to standardized internal room types. This semantic translation ensures consistent

application of requirements regardless of regulatory language or structure:

def get room minimum_areas ,)
"""Extract minimum room areas from building code"""
=1
‘master_bedroom’: ['master_bedroom’],
'bedroom’: ['bedroom’, “bedroom2’],
‘secondary bedroom’: ['bedroom', 'bedroom2’],
‘living_room’: ["living room'],
"kitchen': ["kitchen'],
‘bathroom’: ['bathroom’]
¥

Figure 37: Room Type Mapping for Building Codes

The extraction process prioritizes code-specified minimums but provides intelligent defaults for rooms
not explicitly regulated. This fallback mechanism ensures that the system can generate complete layouts
even when building codes provide incomplete specifications, maintaining functional minimums based

on architectural best practices.

64 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.5.2 AREA DISTRIBUTION & SCALING ALGORITHM

The area distribution algorithm represents the mathematical core of the parametric workflow, calculating
optimal room dimensions that satisfy both the total area constraint and individual room minimums. The
system first determines whether the requested total area can accommodate all minimum requirements

plus necessary circulation space, typically allocated as 20% of the total area.

When the requested area exceeds minimum requirements, the algorithm calculates a scale factor that

proportionally enlarges all rooms while maintaining their relative size relationships:

def calculate_room_dimensions(total area, room_minimums, circulation_factor=08.28):

"""Calculate room dimensions based on total area and minimums™""
min_room_area = sum{room_minimums.values())
min_total area = min_room_area * (1 + circulation_factor)

if total area >= min_total area:
available room area = total area / (1 + circulation_factor)
= math.sqrt(available room_area / min_room_area)

Figure 38: Area Distribution Algorithm

The square root scaling ensures that linear dimensions increase proportionally, maintaining room aspect
ratios while achieving the target areas. This approach prevents rooms from becoming excessively

elongated or compressed as they scale, preserving architectural quality across different apartment sizes.

Room-specific aspect ratios fine-tune the dimensional calculation. Master bedrooms receive a 1.2:1
length-to-width ratio for slight rectangularity, bathrooms use 1.5:1 to accommodate fixtures linearly,
while living rooms remain nearly square for furniture arrangement flexibility. These ratios, derived from

architectural standards, ensure that generated rooms remain functionally appropriate regardless of size.

4.5.5.3 GLOBAL PARAMETER SYNCHRONIZATION

The final stage synchronizes calculated dimensions with Revit's Global Parameter system, propagating
room sizes throughout the parametric template. The system identifies existing global parameters through
FilteredElementCollector queries, matching parameter names to room types through the predefined

mapping structure.

Parameter updates execute within a single transaction, ensuring atomic modification of all related
dimensions. The system converts calculated millimetre values to Revit's internal units, maintaining
precision while conforming to the API requirements. Each parameter update includes validation to

confirm successful modification, with detailed reporting of any parameters that fail to update.

The workflow supports both interactive and external Ul modes, adapting its behaviour based on the

presence of command files. In external mode, the system bypasses confirmation dialogs and provides

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 65
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

structured output suitable for programmatic parsing, enabling seamless integration with the natural

language interface while maintaining full functionality for direct Revit users.

4.5.6 WALL GENERATION FROM LINES

The wall generation system transforms the template's single-line representations into fully realized 3D
BIM walls, bridging the gap between schematic layout and constructible model. This transformation
represents a critical stage where abstract geometric representations become tangible building elements
with material properties, structural characteristics, and dimensional accuracy. The system implements
an intelligent line-to-wall conversion algorithm that maintains spatial relationships while introducing

the physical thickness and properties required for a complete BIM model.

4.5.6.1 LINE COLLECTION & VALIDATION

The conversion process begins with a comprehensive line discovery mechanism that ensures all valid
geometric elements are identified for transformation. The system employs a dual-strategy collection
approach to capture lines regardless of their creation method or category classification. This redundancy

ensures robustness across different template configurations and user workflows.

The primary collection phase utilizes Revit's FilteredElementCollector API [33] with category-specific
filters. The system first queries for detail lines using the OST_Lines built-in category, then supplements
this collection with model lines through the CurveElement class filter. Each collection operation is
scoped to the active view to ensure only visible, relevant geometry is processed. This view-based
filtering prevents the inadvertent conversion of hidden or reference geometry that might exist in the
model but shouldn't form part of the generated apartment.
def find_all_lines_in_view():
"""Find all straight lines in the current view"""

= [1
=[]

= DB.FilteredElementCollector(doc, view.Id)\

.0fCategory(DB.BuiltInCategory.0ST_Lines})\
.WhereElementIsNotElementType()\
.ToElements ()

Figure 39: Line Collection for Wall Generation

The validation phase implements multiple checks to ensure line quality and uniqueness. Each discovered
curve undergoes geometric validation through the is_straight line() function, which verifies that the
element is a true linear segment rather than an arc, spline, or other curved geometry. This verification is
crucial because the Wall.Create API [33] expects linear paths for wall centerlines. Lines shorter than
100 millimeters are automatically filtered out, preventing the creation of invalid micro-walls that could

result from drafting artifacts or accidental line segments.

66 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Duplicate detection employs coordinate-based comparison with controlled precision. The system rounds
start and end coordinates to six decimal places, creating a unique signature for each line segment. Before
accepting a line for processing, this signature is checked against a registry of previously processed
locations. This approach elegantly handles the common scenario where both detail lines and model lines

exist at the same location, ensuring only one wall is created per unique line segment.

4.5.6.2 WALL CREATION & PROPERTY ASSIGNMENT
The wall creation phase transforms validated line geometry into three-dimensional BIM walls with full
material and parametric properties. This process involves wall type selection, dimensional parameter

application, and the invocation of Revit's wall creation API with appropriate configuration.

Wall type selection provides crucial flexibility in defining the physical characteristics of generated walls.
The system dynamically queries the project database for all available wall types, presenting them in a
hierarchical format that combines family and type names. This presentation enables informed selection
based on construction requirements, whether for schematic single-layer walls or detailed multi-layer

assemblies with specific thermal and structural properties.

The core wall generation employs Revit's 'Wall.Create' method that instantiates wall elements based on

the provided parameters:

def create_wall from_line(line, wall_type, level, height):
"""Create a wall from a line"™""

Figure 40: Wall Creation Implementation

This implementation positions walls with their centerlines aligned to the template lines, maintaining the
spatial relationships defined during parametric adjustment. The height parameter, converted from user-
specified millimeters to Revit's internal units, ensures walls extend to the correct elevation. The offset
parameter remains at zero to maintain level alignment, while the flip and structural parameters receive

default values suitable for typical apartment construction.

4.5.6.3 ELEMENT LABELLING & MAPPING STYLE
The labeling system creates a critical bridge between the generated BIM model and the external Ul's

modification capabilities. Each wall receives a sequential identifier with corresponding visual

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 67
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

annotation, establishing a human-readable reference system that enables subsequent element-specific

operations.

Label positioning employs vector mathematics to ensure consistent, readable placement. The algorithm
calculates each wall's midpoint, then determines a perpendicular offset vector using the cross-product
principle. By swapping and negating the wall direction's X and Y components, the system derives a
perpendicular vector that points consistently to one side of the wall. This vector is scaled by 0.5 feet to

position labels at a readable distance from the wall surface without interfering with adjacent geometry.

The text note creation utilizes Revit's TextNote API with carefully configured options for optimal
visibility. The system attempts to use the smallest available text type, even creating a custom 1/25-inch
text type if necessary, ensuring labels remain unobtrusive while maintaining legibility. Text alignment
is set to center both horizontally and vertically, providing consistent appearance regardless of wall

orientation.

The mapping persistence mechanism saves the relationship between labels and element IDs to a JSON
file, creating a persistent bridge between the visual model and the programmatic interface. This mapping
includes not only the element identifiers but also metadata such as wall type and height, enabling the
external Ul to display relevant information about selected elements. The JSON structure facilitates bi-
directional lookup, allowing both label-to-element and element-to-label queries during modification

operations.

Transaction management wraps all creation and labelling operations within a single Revit transaction,
ensuring atomicity and enabling rollback if errors occur. This transactional integrity is crucial for
maintaining model consistency, particularly when processing large numbers of walls where partial
completion could leave the model in an inconsistent state. The system provides detailed feedback about
the operation's success, including counts of created walls, any skipped lines, and the complete element

mapping, enabling users to verify successful generation and troubleshoot any issues.

4577 DOOR & WINDOW PLACEMENT SYSTEM

The door and window placement system represents a sophisticated approach to opening generation that
leverages geometric markers in the template to guide element insertion. Rather than relying on
algorithmic determination of opening positions, which often produces suboptimal results, the system
uses architect-defined circular and elliptical markers to precisely control where doors and windows

appear in the generated model.

68 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4.5.7.1 GEOMETRIC MARKER DETECTION & COLLECTION

The opening placement system begins with comprehensive detection of geometric markers throughout
the model, employing pattern recognition to distinguish door markers (circles) from window markers
(ellipses). This geometric differentiation provides an intuitive visual language where circular markers
indicate door positions and elliptical markers designate window locations, allowing template designers

to clearly communicate opening intentions without additional annotation.

The marker collection algorithm searches the entire model rather than limiting itself to the active view,
ensuring that markers on different levels or in auxiliary views are not overlooked. The system employs
dual collection strategies through the FilteredElementCollector API, first gathering all CurveElement
instances and then supplementing with elements from the OST Lines category. Each discovered curve

undergoes type checking to identify circles and ellipses among the various geometric elements.

Circle validation for door markers requires verification that discovered arcs represent complete circles
rather than partial arcs. The algorithm calculates the expected circumference based on the arc's radius
and compares it to the actual arc length:

def get_all circles_in_model():

"""Find all circles in the entire model™"
for elem in cl 1lect

curve = m
if curve and
arc_length = curve.Length

radius

Figure 41: Door Marker Detection

This mathematical verification ensures that only complete circles trigger door placement, preventing
partial arcs from inadvertently creating openings. A similar approach identifies ellipses for window

placement, with the system extracting the center point of each valid marker for subsequent processing.

Duplicate detection prevents multiple openings at the same location when markers exist in multiple
categories or views. The system tracks marker centers with a distance tolerance of 0.01 feet,
consolidating markers that represent the same intended opening position. This deduplication ensures

clean, predictable results regardless of how templates are constructed.

4.5.7.2 WALL ASSOCIATION & HOST FINDING
The critical challenge in opening placement involves associating each marker with its intended host

wall. The system implements a sophisticated nearest-wall algorithm that projects marker positions onto

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 69
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

wall centerlines, calculating distances while accounting for the three-dimensional nature of building

models.

The wall association process begins by collecting all walls in the model through a filtered element
collector. For each marker, the algorithm creates a test point at the wall's elevation, ensuring that vertical
offsets don't interfere with horizontal distance calculations. This elevation normalization is crucial when

markers are drawn at different Z-coordinates than their host walls.

Distance calculation employs projection mathematics to find the closest point on each wall's centerline:

def find_nearest_wall(point, walls)
"""Find the nearest wall to a given point™""

for wall in walls
wall curve = wall.location.Curve
wall start = wall_curve.GetEndPoint({@)

test_point = DB.XYZ(point.X, point.¥Y, wall start.Z)

projection = wall_curve.Project(test_point)
closest_point = projection.XYZPoint
- math.sqre(
(test_point.X - closest_point.X)**2 +
(test_point.¥ - closest_point.¥)**2

Figure 42: Wall Association Algorithm

The algorithm applies a generous 20-foot tolerance for door associations, accommodating various
drawing styles where markers might be offset from walls for clarity. Windows use a similar but adjusted

tolerance, reflecting their typically more precise positioning requirements.

4.5.7.3 ELEMENT CREATION & PLACEMENT

The actual creation of door and window instances leverages Revit's NewFamilylnstance API [33] with
careful attention to hosting requirements and family-specific placement constraints. The system
implements multiple placement strategies to accommodate different family types and hosting

conditions.

For standard wall-hosted families, the system uses the primary placement method that specifies the host
wall, insertion point, and structural type. The algorithm projects the marker center onto the wall
centerline to determine the exact insertion point, ensuring proper alignment regardless of marker
position accuracy. Level information is extracted from the host wall, maintaining proper floor

associations for multi-story models.

When standard placement fails, often due to family-specific requirements, the system attempts

alternative methods, including face-based placement for complex families. This multi-strategy approach

70 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

maximizes successful placement rates across diverse family libraries. For windows, the system
additionally manages sill height parameters, extracting default values from family types or applying

standard heights when parameters are unavailable.

4.5.7.4 SEQUENTIAL LABELLING & MAPPING

Following successful placement, each opening receives a sequential identifier with a corresponding
visual annotation. Doors are labelled D1, D2, D3 in order of placement, while windows receive W1,
W2, W3 designations. These labels are created as text notes positioned at the original marker centers,

providing clear visual identification that corresponds to the numbering system.

The labelling system generates a comprehensive JSON mapping file that links labels to element IDs,
family types, and placement parameters. This mapping enables the external Ul to reference specific
openings for modifications, such as "flip door D3" or "change family of window W2." The persistent
mapping ensures that element references remain valid across sessions, supporting iterative design

refinement through natural language commands.

The complete placement transaction wraps all operations within Revit's transaction framework, ensuring
atomicity and enabling rollback if errors occur. The system provides detailed feedback about placement
success rates, identifying any markers that couldn't be converted to openings due to missing walls or

family compatibility issues.

4.5.8 SELECTION CYCLE SYSTEM

The Selection Cycle Panel provides sophisticated element navigation and modification capabilities that
bridge the gap between the automated generation system and manual refinement needs. This panel
implements an intelligent cycling mechanism that allows users to systematically traverse through all
instances of specific element types—walls, doors, and windows—while providing immediate access to
modification operations. The system serves dual purposes: enabling manual exploration and adjustment
through PyRevit's interface, and processing targeted commands from the external Ul for element-

specific correction operations.

4.5.8.1 ELEMENT COLLECTION & SORTING STRATEGY

The selection system begins with comprehensive element collection that gathers all instances of the
target category throughout the entire model. Unlike view-specific operations, the cycling mechanism
operates globally, ensuring that no elements are overlooked regardless of their visibility in the current
view. This global scope proves essential for comprehensive model review and modification operations

that span multiple levels or building sections.

The collection process employs FilteredElementCollector with category-specific filters, distinguishing

between element instances and types. For doors, the system filters using BuiltInCategory.OST_ Doors;

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 71
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

for windows, OST Windows; and for walls, the Wall class directly. Each collector explicitly excludes
element types through WhereElementIsNotElementType(), ensuring that only placed instances appear

in the cycling sequence.

Intelligent sorting enhances navigation logic by organizing elements in a spatially coherent sequence:

def collect_doors()
"""Collect all doors in the model™™™

e.LevelId.IntegerValue if hasattr(e, 'Levelld’) els
e.Location.Point.X if hasattr(e.Location, ‘Point’)
e.Location.Point.¥ if hasattr(e.lLocation, 'Point’)

e

m M W
=

n
W om

m M =

Figure 43: Element Sorting Strategy

This multi-key sorting first groups elements by level, then orders them by X-coordinate, and finally by
Y-coordinate. The resulting sequence follows a logical progression through the building, making manual
navigation intuitive and predictable. The sorting algorithm includes exception handling to maintain

functionality even when elements lack expected properties.

4.5.8.2 DUAL-MODEL OPERATING SYSTEM

The selection panel implements a sophisticated dual-mode architecture that seamlessly switches
between interactive cycling and external command processing. This flexibility allows the system to
serve both manual users working directly in Revit (Figure 44) and automated processes controlled by

the external Ul

Door 5 of 5 T

Change Family Type Flip Facing (Front-Back)
Flip Hand (Left-Right)

Figure 44: Element selection cycle for modification purposes

72 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

In interactive mode, the system presents a CommandSwitchWindow dialog that displays comprehensive
element information and available actions. The dialog shows the current element's position in the
sequence, its type designation, level assignment, orientation, and modification status. Users navigate
through elements using Next and Previous buttons, with the selection automatically updating in the Revit
view. Each selection triggers ShowElements() to center the view on the current element, ensuring visual

context during navigation.

External command mode activates when the system detects a JSON command file in the temporary
directory. The command processor parses the file to extract the action type, target element label, and
any additional parameters. The system then uses the label mapping created during element generation

to locate the specific element:

def find_door_by label(label):
"""Find a door element by its label (D1, D2, etc.)"""
if label in door 1 i

et

abel mapping:
— .

door_id = door_info.get(door_
elem_id = DB.ElementId(int(door_id))
door = doc.GetElement(elem_id)

return door

Figure 45: Label-Based Element Resolution

This label-based identification enables natural language commands from the external Ul such as "flip

door D3" or "change window W2 type," to be translated into specific element operations.

4.5.8.3 MODIFICATION OPERATIONS & TRANSACTION MANAGEMENT

The system implements a comprehensive suite of modification operations tailored to each element type.
For doors and windows, operations include flipping orientation (both facing and hand), changing family
types, moving along host walls, and deletion. Wall modifications support type changes, flipping
orientation, and deletion. Each operation executes within a properly managed Revit transaction, ensuring

model integrity and enabling undo functionality.

The flip operations leverage element-specific APIs to reverse orientation:

def flip_door_facing(door):
"""Flip the door facing (front-back)"™"
with revit.Transaction("Flip Door Facing"):
if hasattr(door, 'flipFacing')
door.flipFacing()

return

Figure 46: Flip Operation Implementation

Movement operations calculate displacement vectors based on host wall orientation, converting user-

specified distances from meters to Revit's internal units. The algorithm determines wall direction from

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 73
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

the host element's curve, then applies the movement perpendicular or parallel to this direction based on

the command parameters.

Type changes present available family types through a selection dialog in interactive mode or match
type names through pattern recognition in command mode. The system maintains family-type
dictionaries that combine family and type names for clear identification, enabling users to distinguish

between similar types from different families.

The response mechanism provides feedback for external commands by writing success status and
operation details to a response JSON file. This bidirectional communication ensures that the external Ul
can verify operation completion and update its interface accordingly, maintaining synchronization

between the external control system and the internal Revit model state.

459 ROOM PLACEMENT TOOL

The Room Placement Tool represents the final stage in the BIM generation pipeline, transforming the
geometric framework of walls into semantically rich spatial entities. This tool leverages Revit's
PlanTopology API [33] to detect closed wall boundaries and automatically generate room objects with
intelligent naming based on dimensional analysis. The system bridges the gap between geometric
construction and spatial programming, creating fully annotated rooms that enable area calculations,

finish schedules, and other room-based analyses essential for architectural documentation.

4.5.9.1 BOUNDARY DETECTION THROUGH PLAN TOPOLOGY

The room placement process begins with topological analysis of the wall network to identify closed
circuits that define habitable spaces. The system utilizes Revit's PlanTopology class, which constructs a
mathematical graph representation of walls at a specific level, analyzing their connectivity to detect
enclosed regions. This topological approach proves more robust than geometric intersection testing, as
it inherently handles wall joins, corner conditions, and T-junctions that often complicate boundary

detection algorithms.

The boundary detection algorithm operates at the active view's level, extracting the plan topology and
iterating through its Circuits collection. Each circuit represents a potential room boundary formed by
connected wall segments. The system validates each circuit by attempting to find an interior point using
the GetPointInside() method, which employs ray-casting algorithms to determine points definitively

within the enclosed region:

74 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

def place rooms with plan_ topology(}:
"""Main function to detect boundaries and place rooms"™"
plan_topology = doc.get_PlanTopology(level)
circuits = plan_topology.Circuits

or circuit in circuits:
uv_point = circuit.GetPointInside()
if uv_point:
= doc.Create.NewRoom(level, uv_point)

Figure 47: Room Boundary Detection

The matching algorithm compares each room's measured dimensions against expected dimensions from
global parameters, calculating a difference score that accounts for both normal and rotated orientations.
This rotation handling proves essential as rooms may be oriented differently in the template than their
parameter definitions suggest. A tolerance threshold of 500mm accommodates minor variations from

construction adjustments while preventing incorrect matches.

4.5.9.2 DIMENSIONAL ANALYSIS & ROOM IDENTIFICATION

Following successful room creation, the system implements an intelligent naming algorithm that
correlates room dimensions with global parameters to identify room types. This correlation process
represents a crucial innovation, automatically assigning semantic meaning to geometric spaces based on

their dimensional characteristics rather than requiring manual annotation.

The dimensional extraction process analyzes each room's boundary segments to calculate accurate
internal dimensions. The algorithm accounts for wall thickness by querying the bounding walls' type
parameters, ensuring that internal room dimensions are compared fairly with the center-to-center
dimensions stored in global parameters:

def get room_dimensions{room):

"""Get the actual internal dimensions of a room™™"
boundary segments = room.GetBoundarySegments{options)

or segment_list in boundary segments:
for segment in segment list:
= segment.GetCurve()

Figure 48: Room Dimension Matching

4.5.9.3 AUTOMATIC TAGGING & DOCUMENTATION

The final phase implements automatic room tagging to provide visual identification and area
documentation directly in the plan view. The tagging system creates a complete feedback loop,
displaying both room names derived from dimensional analysis and calculated areas that verify

compliance with requirements.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 75
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The tag placement algorithm positions tags at each room's location point, utilizing Revit's NewRoomTag
API with careful handling of linked versus local rooms. The system constructs LinkElementld objects

for local rooms, ensuring proper association between tags and their parent rooms:

def place_room_tags(doc, view, . E
"""place room tags in the view"""

link_id =]

= doc.Create.NewRoomTag(link_id, uv

Pt E e Y

Figure 49: Room Tag Creation

Tag type selection leverages available room tag families in the project, automatically selecting
appropriate types that display both name and area information. The system provides comprehensive
feedback about tag placement success, including troubleshooting guidance for visibility issues related

to view scale or graphics settings.

The Room Placement Tool completes the parametric generation workflow by transforming abstract
geometry into meaningful architectural spaces. Through its integration of topological analysis,
dimensional matching, and automatic documentation, the tool ensures that generated models contain not
just walls and openings but properly defined rooms ready for quantity takeoffs, finish specifications,
and comprehensive architectural documentation. This semantic enrichment represents the critical

distinction between simple 3D geometry and true BIM models suitable for professional practice.

4.5.10 INTEGRATION WITH EXTERNAL Ul THROUGH THE PROCESS ALL
COMMANDS BUTTON

The Process All Commands button represents the orchestration hub of the entire parametric generation
system, serving as the critical bridge that transforms queued commands from the external UI into
coordinated execution of all previously described components. This master controller implements
sophisticated command interpretation, state management, and sequential execution logic that ensures
commands are processed in the correct order while maintaining contextual awareness across operations.
Unlike individual button functionalities that operate in isolation, this integration layer manages
dependencies, accumulates parameters, and triggers cascading operations that would be impossible

through manual button activation.

4.5.10.1 COMMAND QUEUE PROCESSING & ORCHESTRATION

The Process All Commands button begins by establishing communication with the external UI through
the file-based protocol, reading the JSON command queue from the Windows temporary directory. The
system implements intelligent path resolution that navigates Revit's GUID-based temporary folders to

locate the standard Windows temp directory where command files are deposited:

76 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

temp_path = os.environ.get('TEMP', '")

if temp_path and "\\" in temp_path:
parts = temp_path.split("\\")
if len(parts) » 1 and len(parts[-1]) == 36 and '-' in parts[-1]:
temp_path = *\\'.join(parts[:-1])

Figure 50: Command File Path Resolution

This path normalization ensures consistent file access regardless of Revit's session-specific folder

creation, maintaining reliable communication with the external UI across different execution contexts.

The orchestration engine maintains a comprehensive mapping between command names and their
corresponding PyRevit button scripts, stored in the BUTTON_SCRIPTS dictionary. This mapping
enables dynamic script invocation without hard-coded execution paths, allowing the system to adapt as
new functionalities are added. Each command triggers the appropriate button script through Python's
import mechanism, passing parameters through temporary JSON files that individual buttons read

during execution.

The command processor implements a sophisticated execution strategy that goes beyond simple
sequential processing. It recognizes command dependencies and automatically triggers related
operations. For instance, after executing the 'lines to walls' command, the system automatically invokes
‘room generation’ without explicit user instruction, understanding that walls must exist before rooms
can be placed. This intelligent cascading ensures that the model progresses through logical construction

stages even when users provide incomplete command sequences.

4.5.10.2 STATEFUL PARAMETER ACCUMULATION
A crucial innovation in the Process All Commands implementation is the CommandState class, which
maintains accumulated parameters across multiple commands. This stateful approach solves the
challenge of commands that provide partial information, accumulating context until sufficient data exists
to execute operations:
class CommandState:
def __init_ (self):
self.area = Non

self.building_cod
self.wall_height

m

def can_adjust_rooms(self):
return self.area is not None and self.building code is not None

Figure 51: Command State Management

When processing 'set_area' or 'set building code' commands, the system doesn't immediately attempt
room adjustment. Instead, it accumulates these parameters in the state object, checking after each update

whether sufficient information exists to proceed. Once both area and building code are specified, the

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 77
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

system automatically triggers the room adjustment workflow, synthesizing a complete parameter set

from the accumulated state.

This stateful accumulation enables natural language interactions where users can specify requirements
incrementally. A user might say "Create a 2-bedroom apartment" in one command, then "Make it 75
square meters" in another, and finally "Use German building code." The state management system
accumulates these specifications, executing the appropriate operations once all necessary parameters are

available.

4.5.10.3 DYNAMIC SCRIPT INVOCATION & PARAMETER INJECTION
The script execution mechanism implements sophisticated parameter injection that adapts to each
button's expected input format. Different buttons expect parameters in different locations and formats,

requiring the orchestrator to understand each button's interface:

def execute_button_script(command_name, parameters=HNone):
if parameters:

if command_name

xternal_params.json')

element_type = command_name.replace('cycle_ ', "")
type[:-1]}_command.json")

m
0]
m

[}
[=}
=
=
=t
[=]
5

|
=
[=1]
=
W
3
[+
=+
D
0]

[
[0
=]
5

ot

Figure 52: Dynamic Script Execution

This adaptive parameter routing ensures that each button receives its parameters in the expected format
and location, maintaining compatibility with buttons designed for both standalone and integrated
operation. The system writes parameters to specific files that buttons monitor, creating a seamless

illusion that buttons are being activated with pre-configured settings.

The dynamic import mechanism uses Python's imp module to load button scripts at runtime, avoiding
the need for static imports that would create rigid dependencies. This approach allows the system to
discover and execute buttons dynamically, adapting to changes in the button structure without

modification to the orchestrator code.

4.5.104 ELEMENT-SPECIFIC OPERATIONS THROUGH LABEL RESOLUTION

The Process All Commands button implements direct element manipulation capabilities that bypass the
need for individual cycle button activation. When processing commands like 'flip_element',
'change element type', or 'delete element', the system directly accesses element mapping files to

resolve labels to Revit element IDs:

78 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

This direct manipulation capability significantly improves execution efficiency for modification
commands, avoiding the overhead of launching cycle interfaces for simple operations. The system
maintains transaction integrity by wrapping each modification in a Revit transaction, ensuring that

operations can be undone and that model consistency is preserved.

4.5.10.5 RESPONSE GENERATION & FEEDBACK LOOP

The orchestrator maintains comprehensive execution tracking, generating detailed response files that
inform the external Ul about operation success or failure. Each command execution produces a result
object containing a success status, descriptive messages, and timestamps. These results aggregate into a
comprehensive response structure that includes summary statistics, enabling the external Ul to provide

accurate feedback about the generation process.

The response mechanism creates a closed feedback loop between the external Ul and Revit, enabling
sophisticated error recovery and user guidance. When operations fail, the detailed error messages help
users understand what went wrong and how to correct it, whether through modified commands or

manual intervention in Revit.

This integration layer transforms the collection of individual parametric tools into a cohesive system
capable of interpreting complex natural language specifications and generating complete, code-

compliant BIM models through coordinated execution of all system components.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 79
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

5 EVALUATION AND DISCUSSION
5.1 INTRODUCTION

This chapter evaluates the Parametric Generation of Standardized Spaces system through systematic
testing and analysis. The evaluation focuses on verifying that the system meets its stated objectives
while identifying areas for improvement. Testing was conducted by the author using various apartment

configurations and building codes to assess system performance, reliability, and output quality.

The evaluation methodology combines quantitative measurements of system performance with
qualitative assessment of generated models. Each component of the system underwent individual testing
before integrated workflow validation. This approach ensured that both technical functionality and

practical usability were thoroughly examined.
5.2 TEST CASES AND RESULTS
5.2.1 TEST CASE DESIGN

The testing framework evaluated the system across multiple dimensions to verify its capabilities. Test
cases covered apartment configurations ranging from studio units to four-bedroom layouts. Each
configuration was tested with different total area requirements and building codes to ensure consistent

performance across varied parameters.

The test suite included fifteen primary test cases. Studio apartments were tested at 40, 50, and 60 square
meters. One-bedroom units were evaluated at 50, 60, and 70 square meters. Two-bedroom apartments
underwent testing at 70, 80, and 90 square meters. Three-bedroom configurations were tested at 90, 100,

and 110 square meters. Four-bedroom layouts were evaluated at 110, 120, and 130 square meters.

Each primary test case was executed with three different building codes: Slovenia, USA, and Germany.
These countries were selected for their contrasting regulatory approaches. Slovenia represents European
Union standards with moderate requirements. The USA demonstrates imperial measurement handling
and performance-based codes. Germany exemplifies strict prescriptive regulations with detailed

dimensional specifications.
5.2.2 GENERATION PERFORMANCE RESULTS

The system demonstrated consistent generation times across all tested configurations. Complete BIM
models are generated within 2 to 10 seconds from initial command execution. This timeframe included
template loading, parameter adjustment, building code application, wall generation, opening placement,

and room creation [34].

80 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Two-bedroom apartments averaging 80 square meters showed the most consistent performance. These
units are generated within approximately 5 seconds regardless of the selected building code. The
generation process maintained stability throughout testing with no crashes or incomplete generations

observed.

Studio apartments generated fastest at approximately the 5-second mark due to their simpler spatial
arrangements. Four-bedroom units required up to 8 seconds. The system handled area adjustments

smoothly, successfully scaling room dimensions while maintaining building code compliance.

Wall generation from template lines succeeded in all test cases. The system correctly created 3D walls
with proper joins at corners and intersections. Door and window placement achieved a 100% success
rate when circular and elliptical markers were properly defined in templates. Room generation
accurately detected closed boundaries and created room elements with appropriate names and area

calculations.
5.2.3 NATURAL LANGUAGE PROCESSING ACCURACY

The natural language interface successfully interpreted standard architectural specifications in all tested
formats. Commands like "create a 2-bedroom apartment with 75 square meters" were correctly parsed
into structured parameters. The system handled variations in phrasing, accepting both "2BR" and "two

bedrooms" as equivalent inputs.

Area specifications showed robust handling across different formats. The system correctly interpreted
"75 sqm," "75 square meters," and "75 m?" as identical requirements. Unit conversion from imperial
measurements functioned correctly, with "800 square feet" properly converting to approximately 74

square meters.

Building code selection through natural language proved reliable. Commands specifying "Slovenian
building code" or simply "Slovenia" both triggered the correct code application. The system

appropriately handled partial matches, recognizing "German" as referring to Germany's building code.

Element modification commands demonstrated precise execution. Instructions like "flip door D3"
successfully identified and modified the specified element. The label-based reference system enabled

accurate element selection without requiring users to understand Revit's selection methods.
5.2.4 USER WORKFLOW VALIDATION

The file-based communication protocol operated reliably throughout testing. Command queue files were
consistently detected and processed by the PyRevit plugin. No data corruption or loss occurred during

file transfer between the external Ul and Revit.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 81
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

The status update mechanism provided timely feedback about operation completion. Status files were
created within one second of operation completion and successfully detected by the external UI. This

feedback loop enabled users to understand system state without accessing Revit directly.

The element numbering system correctly labelled all generated walls, doors, and windows. Labels
remained persistent across Revit sessions through JSON mapping files. The sequential numbering (W1,

W2, D1, D2) provided an intuitive reference system for modifications.

Command accumulation in the external Ul worked as designed. Users could build complex
specifications through multiple inputs before execution. The system correctly maintained command

order, ensuring that dependent operations executed in proper sequence.

5.3 COMPARATIVE ANALYSIS WITH EXISTING TOOLS

5.3.1 COMPARISON FRAMEWORK

The comparative analysis evaluates the developed system against existing solutions using five key
criteria. Generation speed measures the time from specification to completed model. Accessibility
evaluates how easily non-technical users can operate the system. BIM integration assesses the quality
and completeness of generated models. Code compliance examines how building regulations are

handled. Customization flexibility considers the range of possible variations.

5.3.2 ANALYSIS AGAINST ACADEMIC SOLUTIONS

The HABX Optimizer generates apartment layouts within one minute [6], comparable to this system's
performance. However, HABX requires users to specify constraints mathematically, limiting
accessibility to technical users [6]. The grid-based discretization in HABX can produce less natural

room arrangements compared to the template-based approach used here.

House-GAN demonstrates impressive machine learning capabilities for layout generation [7]. It
produces diverse layouts from bubble diagrams, but cannot guarantee dimensional accuracy or building
code compliance [7]. The system developed in this research provides deterministic, code-compliant

results that House-GAN cannot match.

The DAT system from Warsaw University handles complete apartment blocks, including massing
optimization [8]. While more comprehensive in scope, DAT requires approximately 25 minutes for
generation. It also depends on Grasshopper's expertise, reducing accessibility compared to natural

language input.

82 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

5.3.3 ANALYSIS AGAINST COMMERCIAL TOOLS

TestFit excels at rapid feasibility studies with excellent financial analysis integration [12]. However, it
focuses on standardized solutions with limited customization options. TestFit generates schematic
layouts rather than detailed BIM models, requiring additional work for construction documentation [35].

Moreover, it does not take building code compliance into account like this system does.

Skema.ai provides sophisticated design reuse capabilities through its learning engine [13]. The platform
requires extensive prior project data to function effectively. Small firms without project libraries cannot
fully utilize Skema's capabilities. The natural language system developed here operates independently

without requiring historical data.

Recent Al-powered tools like Maket.ai promise natural language input but rely on external Al services
[15]. These dependencies create reliability and privacy concerns absent in the developed system. Most
Al tools generate visualizations rather than construction-ready BIM models, limiting professional utility

[36].

5.3.4 UNIQUE ADVANTAGES IDENTIFIED

The system uniquely combines natural language accessibility with professional BIM output. The
integration of building code compliance during generation rather than post-checking represents a

significant advancement.

The element numbering system enables precise post-generation modifications using natural language,
which is commonly unavailable in other tools. Users can reference specific elements through natural
language without understanding BIM selection methods. This capability bridges the gap between

automated generation and manual refinement.

The zero-dependency architecture ensures consistent operation without internet connectivity or external
services. This reliability is critical for professional deployment, where service interruptions cannot be

tolerated.

54 SWOT ANALYSIS

5.4.1 STRENGTHS

5.4.1.1 NATURAL LANGUAGE ACCESSIBILITY

e Zero-dependency custom language processor requiring no external Al services

e Accepts conversational input: "create a 2-bedroom apartment with 75 square meters"
e Handles variations in terminology (2BR, two bedrooms, 2-bedroom)

e Enables element-specific modifications through simple commands ("flip door D4")

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 83
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

5.4.1.2
[]
[

5.4.2

5.4.2.1

Maintains consistent performance without internet connectivity

PROFESSIONAL BIM GENERATION

Produces models with full parametric relationships

Generates properly classified elements (walls, doors, windows) with correct metadata
Creates accurate room boundaries with automatic area calculations

Preserves template parametric relationships for post-generation adjustments

Eliminates the translation step between conceptual design and documentation

INTEGRATED BUILDING CODE COMPLIANCE

Proactive compliance during generation rather than post-checking
Verified requirements from ten countries embedded in system logic
Handles both metric and imperial measurement systems

Prevents creation of non-compliant designs automatically

SPEED AND RELIABILITY

Complete model generation in 5-10 seconds

File-based communication ensures deployment flexibility
Element numbering system enables precise modifications
No network configuration requirements

Consistent performance across different configurations

WEAKNESSES

PLATFORM DEPENDENCIES

Restricted to Autodesk Revit on Windows operating systems
Requires a full Revit license for each user (significant cost barrier)
Dependent on PyRevit framework continuity

Cannot serve organizations using ArchiCAD, Vectorworks, or other platforms

GEOMETRIC LIMITATIONS

Only handles orthogonal, single-level apartment layouts
Cannot process curved walls or angled rooms

No support for multi-story units or vertical circulation

Unable to accommodate irregular site boundaries

LACK OF DESIGN INTELLIGENCE
No optimization for daylight distribution or view quality

Cannot learn from user preferences or past projects

84

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.

Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

54.3

54.3.1

5.4.4

5.4.4.1

Static rule application without improvement over time

Missing circulation efficiency analysis
OPPORTUNITIES

BUILDING TYPOLOGY EXPANSION

Office layouts with workstation configurations

Hotel rooms with high standardization potential

Student housing and dormitory designs

Healthcare facilities (examination rooms, patient rooms)

Retail spaces with modular layouts

TECHNOLOGICAL INTEGRATION

Cloud deployment for universal browser-based access
Cost estimation database connection for instant pricing
LLM integration with the MCP server database
Structural and MEP system coordination

IoT sensor data for occupancy-based optimization

API development for third-party integrations

GEOGRAPHIC MARKET GROWTH

Additional building codes multiply addressable markets
Regional partnerships for code verification
Government adoption for permit automation
Educational use in architecture programs

International firms requiring multi-jurisdiction support

PLATFORM EVOLUTION

IFC-based generation for platform independence
Web assembly for browser-native operation
Mobile applications for on-site modifications

Open-source community development potential
THREATS

Al TECHNOLOGY DISRUPTION
Large language models are improving exponentially in spatial reasoning
Major tech companies investing billions in architectural Al

Al-native BIM platforms potentially obsoleting parametric approaches

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 85
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

e General-purpose Al achieving both creativity and compliance

e Open-source Al tools providing free alternatives

5.4.4.2 PLATFORM VENDOR RISKS
e Autodesk is developing native competing features
e API changes breaking functionality without warning
o Shift to cloud-only architectures, preventing file-based integration
e PyRevit discontinuation or major breaking changes

e Subscription model changes affecting deployment

5.4.4.3 REGULATORY RESISTANCE
e Licensing boards restricting automated design tools
e Unresolved liability for automated design errors
e Building officials rejecting automated submissions

e Professional organizations opposing automation

5.4.4.4 MARKET DYNAMICS
e Economic downturns are reducing construction activity
e Subscription fatigue favours one-time purchases
e Consolidation, eliminating smaller tool vendors
e Commoditization of design automation reduces value

e Skills gap as architects lack experience with automated tools

5.4.4.5 COMPETITIVE LANDSCAPE
e Established vendors adding similar capabilities
e Startups with venture funding are scaling rapidly
e Academic institutions releasing free alternatives
e Industry consortiums developing open standards

e Client direct-to-construction platforms bypassing architects

5.5 DISCUSSION OF FINDINGS

5.5.1 ACHIEVEMENTS OF RESEARCH OBJECTIVES

The system successfully achieved the primary objective of bridging user intent and BIM generation
through natural language. Testing confirmed that non-technical users could generate professional-
quality models without understanding parametric design or BIM concepts. The natural language

processor accurately interpreted architectural requirements without external Al dependencies.

86 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Building code compliance integration exceeded initial expectations. The system not only verified
compliance but also actively prevented non-compliant generation. This proactive approach eliminated
the iterative checking typical in manual processes. The successful incorporation of ten different building

codes demonstrated the scalability of the compliance framework.

The template-based parametric engine proved capable of generating fully detailed BIM models directly
in Revit. Generated models included proper element classification, parametric relationships, and
semantic information required for professional use. The quality matched manually created models while

requiring a fraction of the time.

The file-based communication protocol provided reliable data exchange without network complexity.
This approach simplified deployment while maintaining responsiveness adequate for interactive design.

The decision to avoid network protocols proved correct given enterprise security constraints.
5.5.2 IMPLICATIONS OF ARCHITECTURAL PRACTICE

The dramatic time reduction from weeks to minutes fundamentally changes project economics.
Architects can explore numerous design options within single client meetings. This capability
transforms client interaction from presentation to collaboration. Real-time generation enables immediate

response to feedback rather than scheduling follow-up meetings.

Small investors gain access to professional design tools previously requiring architectural expertise.
They can independently evaluate site potential before engaging architects. This democratization could
unlock development opportunities in underserved markets. The system empowers stakeholders

traditionally excluded from early design decisions.

Architects benefit from the automation of repetitive technical tasks. Junior staff can focus on design
thinking rather than manual drafting. Senior architects can handle more projects by delegating routine

generation tasks. The profession can evolve toward higher-value creative and strategic services.

5.5.3 BUILDING CODE INTEGRATION IMPACT

Proactive compliance checking during generation eliminates costly post-design corrections. Architects
gain confidence that the generated designs will pass regulatory review. The system reduces liability

exposure from code violations.

Multi-jurisdictional support enables firms to work across borders efficiently. The same system handles
metric and imperial requirements seamlessly. Cultural preferences embedded in different codes are

automatically respected. This capability is increasingly valuable as architectural practice globalizes.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 87
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

5.6 LIMITATIONS

5.6.1 CURRENT SYSTEM LIMITATIONS

The system currently operates only within Revit on Windows platforms. Organizations using
ArchiCAD, Vectorworks, or other BIM software cannot utilize the system. This platform dependency
limits potential adoption. Future versions should explore IFC-based generation for platform

independence.

Apartment layouts remain restricted to orthogonal geometries on single levels. The system cannot handle
curved walls, angled rooms, or multi-story units. Many contemporary designs exceed these geometric

constraints. Expanding geometric capabilities would significantly broaden applicability.

The template library contains limited variations for each apartment configuration. Users may find
available options insufficient for specific projects. Creating new templates requires Revit expertise,

reducing accessibility. A template creation interface would enable broader participation.

The system lacks optimization algorithms for qualitative design aspects. Generated layouts meet
requirements but may not maximize daylight or minimize circulation. Adding multi-objective

optimization could improve design quality. Machine learning could help identify optimal solutions.

5.6.2 METHODOLOGICAL LIMITATIONS

Testing was conducted solely by the system developer. Independent user testing would provide a more
objective evaluation. Different users might encounter issues not discovered during development.

Broader testing would validate usability claims more thoroughly.

The evaluation occurred in controlled development environments. Production deployment might reveal
performance or compatibility issues. Real-world projects could present requirements exceeding current

capabilities. Field testing would provide valuable insights for system refinement.

Comparative analysis relied on published information about other systems. Direct side-by-side testing
would provide more accurate comparisons. Some capabilities of commercial tools may not be publicly

documented. Hands-on evaluation would strengthen comparative claims.

88

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 89
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

6 CONCLUSION

6.1 SUMMARY OF RESEARCH FINDINGS

This thesis developed a parametric generation system that automates the creation of code-compliant
apartment BIM models through natural language commands. The system consists of three integrated
components: an external user interface with custom natural language processing, a PyRevit plugin for
BIM generation, and a file-based communication protocol connecting them. Testing demonstrated that
the system generates complete apartment models in 10-30 seconds, compared to the weeks required by

traditional methods [1].

The research validated that natural language interfaces can effectively translate architectural
requirements into BIM operations without external Al dependencies. The custom-built language
processor achieved consistent accuracy in interpreting commands across various phrasings and formats.
The building code compliance system successfully enforced regulations from ten countries during the

generation, preventing non-compliant designs rather than identifying violations afterward.

6.2 ACHIEVING THE RESEARCH OBJECTIVES

6.2.1 INTERFACE ACCESSIBILITY OBJECTIVES

Objective O1.1 sought to create a natural language interface for architectural requirements. The
implemented system successfully interprets commands like "create a 2-bedroom apartment with 75
square meters" without requiring technical knowledge. The custom processor handles variations in

terminology and maintains consistent performance without internet connectivity.

Objective O1.2 aimed for post-generation modification through natural language. The element
numbering system enables users to modify specific components using commands like "flip door D3."
This capability was validated through the successful execution of various modification commands

during testing.

Objective O1.3 required demonstrating accessibility to non-experts while maintaining professional
precision. The system allows users without BIM knowledge to generate models that match the quality
of manually created ones. The generated models include proper element classification and parametric

relationships required for professional use.

6.2.2 TECHNICAL IMPLEMENTATION OBJECTIVES

Objective 02.1 called for a template-based parametric engine generating detailed BIM models. The

system successfully produces complete apartment models with walls, doors, windows, and rooms

90 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

directly in Revit. Each element maintains proper classification and metadata for construction

documentation.

Objective 02.2 established reliable file-based communication between components. The JSON-based
protocol achieved consistent data transfer without corruption or loss across all test cases. The approach

avoided network complexity while maintaining adequate responsiveness.

Objective 02.3 implemented area distribution algorithms for room balancing. The system automatically
adjusts room dimensions to meet total area requirements while maintaining building code minimums.

The algorithm successfully scaled rooms proportionally across all tested configurations.

6.2.3 COMPLIANCE AND VALIDATION OBJECTIVES

Objective 03.1 developed building code compliance for ten countries. The system incorporates verified
requirements from Slovenia, USA, Germany, France, Spain, Australia, Netherlands, Norway, Portugal,

and Bangladesh. Compliance checking occurs during generation, not as post-validation.

Objective 03.2 validated effectiveness through multiple apartment configurations. Testing covered
studio to four-bedroom layouts across different building codes. All generated models met their

respective code requirements.

Objective O3.3 evaluated time savings compared to manual processes. The system generates models in
under one minute versus 2-4 weeks for traditional preliminary design [1]. This represents a time

reduction exceeding 99% for initial concept generation.

6.3 CRITICAL ASSESSMENT OF ACHIEVEMENTS

The system achieved its core goal of making BIM generation accessible through natural language.
However, several aspects merit critical examination. The natural language processor, while functional,
relies on pattern matching rather than true semantic understanding. This approach works for standard

architectural specifications but may struggle with unconventional or ambiguous requests.

The building code compliance system successfully prevents basic violations but cannot handle
performance-based requirements or local amendments. The current implementation assumes the most
restrictive interpretation of ambiguous requirements, potentially over-constraining designs. Real-world
projects often involve variance requests and alternative compliance paths that the system cannot

accommodate.

The template-based approach ensures quality but limits creativity. Users cannot generate truly novel
layouts, only variations of predefined patterns. While this constraint aligns with the focus on

standardized spaces, it restricts the system's applicability to projects requiring unique spatial solutions.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 91
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

6.4 LIMITATIONS

The system operates exclusively within Revit on Windows platforms. This dependency excludes
organizations using alternative BIM software and creates vendor lock-in risks. The PyRevit framework

dependency adds another potential failure point if the project discontinues.

Geometric capabilities remain limited to orthogonal, single-level apartments. The system cannot
generate curved walls, angled rooms, or multi-story units. These constraints exclude many contemporary

residential designs from the system's scope.

Testing occurred only through developer evaluation without independent user studies. The absence of
testing in production environments means real-world performance remains unverified. Different users

might encounter usability issues not discovered during development.

The system lacks learning capabilities or optimization algorithms. Generated layouts meet requirements
but don't optimize for qualitative factors like daylight or circulation efficiency. Each generation starts

fresh without benefiting from previous successes or user preferences.

6.5 CONTRIBUTIONS TO KNOWLEDGE

6.5.1 ACADEMIC CONTRIBUTIONS

This research demonstrates that domain-specific natural language processing can achieve comparable
results to general Al systems for architectural applications. The custom interpreter provides predictable,
debuggable behaviour essential for professional tools [37]. This finding suggests that specialized

interpreters may be preferable to general-purpose Al for safety-critical domains.

The integration of building code compliance as generative constraints rather than post-generation
validation represents a methodological contribution. This approach could be applied to other domains

where regulatory compliance shapes design decisions.

The file-based communication architecture proves that complex inter-process communication can be
achieved without network protocols. This finding has implications for enterprise software deployment,

where network restrictions complicate traditional architectures.

6.5.2 PRACTICAL CONTRIBUTIONS

The system provides immediate value to architectural practice by automating repetitive tasks. Architects
can generate multiple design options during client meetings, transforming the design process from

sequential to interactive.

92 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

For smaller investors and developers, the system democratizes access to professional design tools. They
can evaluate site potential independently before engaging architects, potentially unlocking projects

previously deemed unfeasible.

The building code integration across ten countries demonstrates the feasibility of multi-jurisdictional

compliance systems. This capability becomes increasingly valuable as architectural practice globalizes.
6.6 FUTURE RESEARCH DIRECTIONS

The following research directions could significantly enhance the system's capabilities and address

current limitations:
6.6.1 MULTI-STORY BUILDING GENERATION

o Extending the system from single apartments to complete multi-story residential buildings
represents the most transformative enhancement

e Vertical circulation elements, including stairs, elevators, and fire escapes, would need
integration with apartment layout generation

o The system could implement staggered apartment arrangements to optimize unit mix and
building efficiency across floors

e Floor-to-floor relationships would require handling of structural elements, service shafts, and
vertical MEP routing

e Building-level optimization could balance unit types, ensure code-compliant egress paths, and
maximize rentable area

o Integration with structural systems would ensure load path continuity and column placement

coordination across levels

6.6.2 PLATFORM INDEPENDENCE THROUGH IFC STANDARDS

e Developing direct IFC (Industry Foundation Classes) generation would eliminate the current
Revit dependency [38]

e IFC output would enable the system to work with any BIM platform, including ArchiCAD,
Vectorworks, and Allplan [39]

e Open BIM standards would ensure long-term sustainability independent of vendor-specific API
changes

e The system could generate IFC models directly from templates without requiring intermediate

platform-specific conversion

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 93
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

6.6.3

6.6.4

6.6.5

6.6.6

6.6.7

LARGE LANGUAGE MODEL INTEGRATION

Implementing LLM integration through Model Context Protocol (MCP) server connections
would revolutionize the system's natural language capabilities

MCP servers could provide contextual understanding of complex architectural requirements
beyond pattern matching [40]

This architecture would enable the system to interpret nuanced design intentions and ambiguous
specifications

The LLM could generate explanations for design decisions, improving transparency and user

trust

AUTOMATED BUILDING CODE EXPANSION

LLM integration could enable automatic extraction and processing of building codes from new
jurisdictions

The system could read official regulatory documents and generate structured JSON files
Natural language processing could interpret ambiguous regulatory language and performance-
based requirements

This capability would allow rapid expansion to new markets without manual code extraction

SITE-CONSTRAINED GENERATION

Developing algorithms to generate BIM models within irregular site boundaries would address
a major limitation

Integration with GIS data could enable automatic site analysis and constraint identification
The system could optimize building placement considering setbacks, easements, and
topography

Site-specific factors like solar orientation could influence apartment layout generation

DYNAMIC TEMPLATE EVOLUTION

LLM-powered template modification could adapt base templates to specific client requirements
The system could learn from successful modifications to evolve template libraries automatically
Machine learning could identify patterns in client preferences to suggest template improvements
[41]

This capability would balance standardization benefits with customization needs

ADDITIONAL RESEARCH PRIORITIES

Investigation of multi-objective optimization algorithms for balancing competing design criteria

94 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

e Development of performance simulation integration for energy and daylighting analysis
e Exploration of generative Al for creating novel templates while maintaining code compliance
e Study of collaborative design protocols enabling multiple stakeholders to contribute

simultaneously

These research directions would transform the system from a specialized tool into a comprehensive
design platform capable of handling diverse architectural challenges while maintaining the accessibility

that defines its core value
6.7 FINAL REMARKS

This research addressed a specific problem: the inaccessibility of BIM tools for non-technical
stakeholders in residential design. The developed system provides a proof of concept that natural
language interfaces can bridge this gap without sacrificing professional standards or regulatory
compliance. The achievements are concrete: functional software that generates code-compliant BIM

models in seconds rather than weeks.

The limitations are equally clear. The system handles only standardized apartment layouts on single
levels within one specific BIM platform. It cannot optimize designs or learn from experience. These

constraints define the system's current scope rather than fundamental barriers.

Most importantly, this proof of concept establishes a foundation for the future of automated BIM
generation. The methodologies developed here—from requirement interpretation to parametric control
to compliance verification—demonstrate that comprehensive building model automation is achievable.
Future systems could build upon this framework to generate entire multi-story buildings, handle
complex geometries, and adapt to diverse architectural programs. The research validates that automation

can preserve architectural quality while dramatically reducing production time.

This work ultimately demonstrates that the vision of accessible BIM automation is not merely
aspirational but technically feasible. The system shows how specialized tools can augment rather than
replace architectural expertise, enabling professionals to focus on design quality while technology
handles production mechanics. The transition from weeks to seconds in model generation represents
more than efficiency gains—it suggests a fundamental shift in how architectural services could be
delivered. The proof of concept presented here provides both the technical framework and practical

evidence needed to pursue this transformation.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 95
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

REFERENCES

1. McGrawHill Construction (2014) Smart Market Report the Business Value of BIM for Construction
in Major Global Markets. McGraw Hill Construction, New York. - References—Scientific
Research Publishing. (n.d.). Retrieved 5 September 2025, from
https://www.scirp.org/reference/referencespapers?referenceid=2081256

2. The Role of BIM in Simplifying Construction Permits in Kuwait | Request PDF. (n.d.). ResearchGate.
Retrieved 5 September 2025, from
https://www.researchgate.net/publication/315873703 The Role of BIM in Simplifying Co
nstruction_Permits_in_Kuwait

3. Veloso, P., Celani, G., & Scheeren, R. (2018). From the generation of layouts to the production of
construction documents: An application in the customization of apartment plans. Automation
in Construction, 96, 224-235. https://doi.org/10.1016/j.autcon.2018.09.013

4. Wang, X.-Y., Yang, Y., & Zhang, K. (2018). Customization and generation of floor plans based on
graph transformations. Automation in Construction, 94, 405-416.
https://doi.org/10.1016/j.autcon.2018.07.017

5. Flemming, U. (1978). Wall Representations of Rectangular Dissections and Their Use in Automated
Space Allocation. Environment and Planning B: Planning and Design, 5(2), 215-232.
https://doi.org/10.1068/b050215

6. Laignel, G., Pozin, N., Geffrier, X., Delevaux, L., Brun, F., & Dolla, B. (2021). Floor plan generation
through a mixed constraint programming-genetic optimization approach. Automation in
Construction, 123, 103491. https://doi.org/10.1016/j.autcon.2020.103491

7. Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa, Y. (2020). House-GAN: Relational
Generative Adversarial Networks for Graph-constrained House Layout Generation (No.
arXiv:2003.06988). arXiv. https://doi.org/10.48550/arXiv.2003.06988

8. Jansen, 1., Piatek, L., Cygan, M., Hlebowicz, J., Krajewski, B., Miszewicz, A., Nowacka, A., Roguski,
B., & Szabelewska, M. (2023). Automating the Architectural Design of Apartment Point Block.

491-500. https://doi.org/10.52842/conf.caadria.2023.2.491

96 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

9. Camozzato, D., Dihl, L., Silveira, 1., Marson, F., & Musse, S. R. (2015). Procedural floor plan
generation from building sketches. The Visual Computer, 31(6), 753-763.
https://doi.org/10.1007/s00371-015-1102-2

10. Eastman, C., Teicholz, P., Sacks, R. and Liston, K. (2011) BIM Handbook A Guide to Building
Information Modeling for Owners, Managers, Designers, Engineers, and Contractors. John
Wiley & Sons, Hoboken. - References—Scientific Research Publishing. (n.d.). Retrieved 5
September 2025, from https://www.scirp.org/reference/referencespapers?referenceid=1986720

11. Guo, Z., & Li, B. (2017). Evolutionary approach for spatial architecture layout design enhanced by
an agent-based topology finding system. Frontiers of Architectural Research, 6(1), 53—62.
https://doi.org/10.1016/j.foar.2016.11.003

12. TestFit: Real Estate Feasibility Platform. (n.d.). Retrieved 1 September 2025, from
https://www.testfit.io/

13. Skema. (n.d.). Skema. Retrieved 1 September 2025, from https://www.skema.ai

14. Coémo encontrar y descargar la extension Roombook para Revit. (n.d.). Retrieved 1 September 2025,
from
https://www.autodesk.com/es/support/technical/article/caas/sfdcarticles/sfdcarticles/ESP/How
-to-find-and-download-the-Roombook-extension-for-Revit.html

15. Generative Design | Architecture Design Software | Maket. (n.d.). Retrieved 1 September 2025, from
https://www.maket.ai/

16. Wu, W., Fan, L., Liu, L., & Wonka, P. (2018). MIQP-based Layout Design for Building Interiors.
Computer Graphics Forum, 37(2), 511-521. https://doi.org/10.1111/cgf. 13380

17. OpenAl, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman, F. L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V.,
Baltescu, P., Bao, H., Bavarian, M., Belgum, J., ... Zoph, B. (2024). GPT-4 Technical Report
(No. arXiv:2303.08774). arXiv. https://doi.org/10.48550/arXiv.2303.08774

18. Rodrigues, E., Sousa-Rodrigues, D., Teixeira de Sampayo, M., Gaspar, A. R., Gomes, A, &

Henggeler Antunes, C. (2017). Clustering of architectural floor plans: A comparison of

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 97
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

shape representations. Automation in Construction, 80, 48-65.
https://doi.org/10.1016/j.autcon.2017.03.017

19. Zeng, P., Yin, J., Gao, Y., Li, J., Jin, Z., & Lu, S. (2025). Comprehensive and Dedicated Metrics for
Evaluating Al-Generated Residential Floor Plans. Buildings, 15(10), 1674.
https://doi.org/10.3390/buildings15101674

20. Data-Driven Design and Construction: 25 Strategies for Capturing, Analyzing and Applying
Building Data | Wiley. (n.d.). Wiley.Com. Retrieved 13 September 2025, from
https://www.wiley.com/en-ca/Data-
Driven+Designt+and+Construction%3 A+25+Strategies+for+Capturing%2C+Analyzing+and+
Applying+Building+Data-p-9781118898703

21. Succar, B. (2009). Building information modelling framework: A research and delivery foundation
for industry stakeholders. = Automation in Construction, 18(3), 357-375.
https://doi.org/10.1016/j.autcon.2008.10.003

22. Sommerville, 1. (2016). Software engineering (Tenth edition). Pearson.

23. ECMA-404—Ecma International. (n.d.). Retrieved 5 September 2025, from https://ecma-
international.org/publications-and-standards/standards/ecma-404/

24. (PDF) Flexible housing: The means to the end. (2025). ResearchGate.
https://doi.org/10.1017/S1359135505000345

25. pyRevit. (n.d.). Pyrevitlabs on Notion. Retrieved 5 September 2025, from
https://pyrevitlabs.notion.site/

26. Autodesk Revit | Get Prices & Buy Official Revit Software. (n.d.). Retrieved 5 September 2025,
from https://www.autodesk.com/products/revit/overview

27. PDF. (n.d.). Retrieved 5 September 2025, from https://dn790001.ca.archive.org/0/items/bme-vik-
konyvek/Software%20Engineering%20-%20Ian%20Sommerville.pdf

28. tkinter—Python interface to Tcl/Tk. (n.d.). Python Documentation. Retrieved 5 September 2025,

from https://docs.python.org/3/library/tkinter.html

98 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

29. Mastering Regular Expressions, 3rd Edition. (n.d.). O’Reilly Online Learning. Retrieved 5
September 2025, from https://www.oreilly.com/library/view/mastering-regular-
expressions/0596528124/

30. ISO 80000-1:20009. (nd.). ISO. Retrieved 5 September 2025, from
https://www.iso.org/standard/30669.html

31. dotnet-bot. (n.d.). FileSystemWatcher Class (System.IO). Retrieved 5 September 2025, from
https://learn.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher?view=net-9.0

32. 2021 International Building Code (IBC). (n.d.). Retrieved 5 September 2025, from
https://codes.iccsafe.org/content/IBC2021P2

33. Revit API 2023. (n.d.). Retrieved 5 September 2025, from https://www.revitapidocs.com/2023/

34. Bortoluzzi, B., Efremov, 1., Medina, C., Sobieraj, D., & McArthur, J. J. (2019). Automating the
creation of building information models for existing buildings. Automation in Construction,
105, 102838. https://doi.org/10.1016/j.autcon.2019.102838

35. Clayton, M. J., Warden, R. B., & Parker, T. W. (2002). Virtual construction of architecture using
3D CAD and simulation. Automation in Construction, 11(2), 227-235.
https://doi.org/10.1016/S0926-5805(00)00100-X

36. Artificial intelligence in architecture: Generating conceptual design via deep learning | Request PDF.
(2025). ResearchGate. https://doi.org/10.1177/1478077118800982

37. Aish, R., & Woodbury, R. (2005). Multi-level Interaction in Parametric Design. In A. Butz, B.
Fisher, A. Kriiger, & P. Olivier (Eds), Smart Graphics (pp. 151-162). Springer.
https://doi.org/10.1007/11536482 13

38. Industry Foundation Classes (IFC)—buildingSMART International. (2024, November 13).
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/

39. (PDF) The IFC Standard—A Review of History, Development, and Standardization. (2025).
ResearchGate. https://www.researchgate.net/publication/252069448 The IFC Standard -
_A Review_of History Development and_Standardization

40. What is the Model Context Protocol (MCP)? (n.d.). Model Context Protocol. Retrieved 14

September 2025, from https://modelcontextprotocol.io/docs/getting-started/intro

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 99
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

41. Design with shape grammars and reinforcement learning | Request PDF. (2025). ResearchGate.

https://doi.org/10.1016/j.ae1.2012.12.004

100 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 101
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

APPENDICES
APPENDIX A: BUILDING CODE REQUIREMENTS COMPARISON

This appendix presents a comprehensive comparison of minimum spatial requirements across the ten
countries supported by the Parametric Generation of Standardized Spaces system. All measurements are

in metric units for consistency.

MINIMUM ROOM AREA REQUIREMENTS (m?)

Room Type Slovenia USA Germany France Spain Australia Netherlands Norway Portugal Bangladesh
Living Room 16.0 1.0 20.0 18.0 14.0 12.0 15.0 15.0 10.0 12.0
Master Bedroom 12.0 9.3 14.0 11.0 10.0 10.0 1.0 9.0 10.5 9.0
Secondary Bedroom 8.0 7.0 10.0 9.0 8.0 8.0 8.0 7.0 9.0 7.5
Kitchen 6.0 5.0 8.0 7.0 5.0 5.0 6.0 5.0 6.0 45
Bathroom 35 35 4.0 3.0 30 3.0 35 3.0 33 25

Table 1: Minimum room area requirements as specified in each country's building regulations

ADDITIONAL SPATIAL REQUIREMENTS

Parameter Slovenia USA Germany France Spain Australia Netherlands Norway Portugal Bangladesh
Minimum Ceiling Height (m) 2.50 2.40 2.50 2.50 2.50 2.40 2.60 2.40 2.40 275
Minimum Corridor Width (m) 1.00 0.90 1.00 0.90 0.80 1.00 0.90 0.90 1.00 0.90

Minimum Door Width (m) 0.80 0.80 0.80 0.80 0.75 0.80 0.85 0.80 0.80 0.75
Min T““’l(’:f)“ IBR Apt 35 30 40 35 30 35 35 30 35 28
Min. Total Area 2BR Apt 55 50 60 55 50 55 55 50 52 45

(m?)

Table 2: Additional dimensional and spatial requirements for residential

Note: All values extracted from official building codes and regulations as of January 2025. USA measurements converted

from imperial units. Building codes may have additional requirements not shown in this summary table.
APPENDIX B: AREA DISTRIBUTION ALGORITHM

The core Parametric Algorithm in Pseudocode format:

ALGORITHM: Proportional Area Distribution
INPUT:
- target_total_area (user specified)
- room_list (from template)
- building_code_minimums (from selected country)

PROCESS:

1. Calculate minimum_required_area = SUM(all room minimums from building code)
2. Add circulation_space = minimum_required_area x 0.20

3. Total minimum = minimum_required_area + circulation_space

102 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

4. IF target_total_area < total_minimum THEN
RETURN ERROR "Area too small for building code compliance"

5. Calculate scale_factor = SQRT(target_total_area / total_minimum)
6. FOR each room IN room_list:
new_width = room.min_width x scale_factor

new_length = room.min_length x scale_factor

// Maintain aspect ratios

IF room.type == "bathroom" THEN
new_length = new_width x 1.5

ELSE IF room.type == "master_bedroom" THEN
new_length = new_width x 1.2

END IF

// Ensure minimums are still met
new_width = MAX(new_width, room.min_width)
new_length = MAX(new_length, room.min_length)

UPDATE global_parameters with new dimensions
END FOR

OUTPUT: Adjusted room dimensions meeting target area

APPENDIX C: PyYREVIT COMMAND DIALOGUES

C1: PROCESS ALL COMMANDS DIALOGUE DURING MASTER MODELLING

Process All Commands

Debug Info:
e Original TEMP: C:\Users\mursa\AppData\Local\Temp\e53c883c-6738-4f75-ac2a-

a2bf549646bb
e Using temp path: C:\Users\mursa\AppData\Local\Temp
Looking for command queue at:

C:\Users\mursa\AppData\Local\Temp\commands_queue.json
Found 4 commands to process
e Command 1: select_template
Parameters: { "template_name": "2BR_1BA apartment"}
External UI Mode
Template: 2BR_1BA_apartment
Creating project: 2BR_1BA_apartment_20250915 115428.rvt
Success! Project created.
Project opened successfully!
2 cCommand 'select template' executed successfully
e Command 2: set_area
Parameters: { "total_area": 70}
Area set to 70 sgm
e Command 3: set_building_ code
Parameters: { "building code": "slovenia_code"}
2 Building code set to slovenia_code
Ready to adjust room sizes with:
e Area: 70 sqgm
e Building Code: slovenia_code
e Parameters: { "building_code": "slovenia_code", "auto_confirm": true,
"total_area": 70}

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 103
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Calling adjust_room_sizes button...
Debug: Wrote parameters to:
C:\Users\mursa\AppData\Local\Temp\button_parameters.json
External UI Mode
Building Code: slovenia_code
Total Area: 70 sqgm
Detected room types in model: ['bathroom', 'master_bedroom', 'living room',
"bedroom2', 'kitchen', 'bedroom']
Room minimums calculated: {'living room': 13.0, 'kitchen': 4.5, 'master_bedroom':
10.0, 'bedroom2': 8.0, 'bathroom': 3.0, 'bedroom': 8.0}
Calculated Dimensions:
Calculated room dimensions for 70 m2 apartment:Building Code: slovenia_codeScale
Factor: 1.12
Master Bedroom: 3.9m x 3.3m = 12.7 m2Bedroom 2: 3.2m x 3.2m = 9.9 m2Bedroom: 3.2m
X 3.2m = 9.9 m2Living Room: 4.1m x 4.1m = 16.4 m2Kitchen: 2.5m x 2.3m = 5.6
m2Bathroom: 2.4m x 1.6m = 3.8 m2
Total Room Area: 58.4 m2Circulation Area: 11.6 m2 (17%)
Detected 6 rooms in your model.

Command 'adjust_room_sizes' executed successfully

e Command 4: lines_to_walls
Parameters: { "wall height": 3.0, "wall type": "Basic Wall"}
Debug: Wrote parameters to:
C:\Users\mursa\AppData\Local\Temp\button_parameters.json
Saved wall mapping to: C:\Users\mursal\AppData\Local\Temp\wall label mapping.json
Successfully created 19 walls from 19 lines.

Wall Type: Basic Wall : Wall-Ext_102Bwk-50Air-45Ins-100DBlk-12P
Wall Height: 3000mm

Wall Labels:
WL10@ - Element ID: 336338
WL18 - Element ID: 336354
WL2 - Element ID: 336322
WL9 - Element ID: 336336
WL19 - Element ID: 336356
WL13 - Element ID: 336344
WL7 - Element ID: 336332
WL6 - Element ID: 336330
WL4 - Element ID: 336326
WL5 - Element ID: 336328
WL14 - Element ID: 336346
WL1 - Element ID: 336316
WL3 - Element ID: 336324
WL12 - Element ID: 336342
WL16 - Element ID: 336350
WL8 - Element ID: 336334
WL17 - Element ID: 336352
WL15 - Element ID: 336348
WL11 - Element ID: 336340
Command 'lines_to_walls' executed successfully
e Auto-executing: Room Generation
Automatically generating rooms after wall creation...
Debug: Room script path:
C:\MasterThesis\ParametricAIBIMModelling\pyRevit.extension\ParametricAIBIM.tab\o
9 Room Tools.panel\Room Generation.pushbutton\script.py
Debug: Script exists: True
e Room Generation Tool
Detecting closed wall boundaries...
Found 5 closed boundaries

104 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Creating rooms in boundaries...

v Created room 1

v Created room 2

v Created room 3

v Created room 4

v Created room 5

Analyzing global parameters to assign room names...
Detected room types from global parameters:

e Bedroom2: 3150mm x 3150mm (center-to-center)

e Bathroom: 2400mm x 1600mm (center-to-center)

e Kitchen: 2500mm x 2250mm (center-to-center)

e LivingRoom: 4050mm x 4050mm (center-to-center)

e MasterBedroom: 3900mm x 3250mm (center-to-center)
Analyzing room dimensions for parameter matching...
Room analysis:

e Wall thickness: 310mm

e Internal dimensions: 3590mm x 2940mm

e Bedroom2 match: 2840mm x 2840mm (diff: 850mm)

e Bathroom match: 2090mm x 1290mm (diff: 3150mm)

e Kitchen match: 2190mm x 1940mm (diff: 2400mm)

e LivingRoom match: 3740mm x 374@mm (diff: 950mm)

e MasterBedroom match: 3590mm x 2940mm (diff: ©Omm)
Best match: MasterBedroom (score: ©@mm)

Room analysis:

e Wall thickness: 310mm

e Internal dimensions: 284@0mm x 2840mm

e Bedroom2 match: 2840mm x 2840mm (diff: Omm)

e Bathroom match: 2090mm x 1290mm (diff: 2300mm)

e Kitchen match: 2190mm x 1940mm (diff: 1550mm)

e LivingRoom match: 3740mm x 3740mm (diff: 1800mm)

e MasterBedroom match: 3590mm x 2940mm (diff: 850mm)
Best match: Bedroom2 (score: Omm)

Room analysis:

e Wall thickness: 310mm

e Internal dimensions: 2090mm x 1290mm

e Bedroom2 match: 2840mm x 2840mm (diff: 2300mm)

e Bathroom match: 2090mm x 1290mm (diff: ©mm)

e Kitchen match: 2190mm x 1940mm (diff: 750mm)

e LivingRoom match: 3740mm x 3740mm (diff: 4100mm)

e MasterBedroom match: 3590mm x 2940mm (diff: 3150mm)
Best match: Bathroom (score: Omm)

Room analysis:

e Wall thickness: 310mm

e Internal dimensions: 2190mm x 1940mm

e Bedroom2 match: 2840mm x 284@0mm (diff: 1550mm)

e Bathroom match: 2090mm x 1290mm (diff: 750mm)

e Kitchen match: 2190mm x 1940mm (diff: omm)

e LivingRoom match: 3740mm x 3740mm (diff: 3350mm)

e MasterBedroom match: 3590mm x 2940mm (diff: 2400mm)
Best match: Kitchen (score: @mm)

Room analysis:

e Wall thickness: 310mm

e Internal dimensions: 4597mm x 3972mm

e Bedroom2 match: 2840mm x 2840mm (diff: 2889mm)

e Bathroom match: 2090mm x 1290mm (diff: 5189mm)

o Kitchen match: 2190mm x 1940mm (diff: 4439mm)

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 105
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

e LivingRoom match: 3740mm x 3740mm (diff: 1089mm)
e MasterBedroom match: 3590mm x 2940mm (diff: 2039mm)
No suitable match found
v Room 1 identified as MasterBedroom based on position
v Room 2 identified as Bedroom2 based on position
v Room 3 identified as Bathroom based on position
v Room 4 identified as Kitchen based on position
Room could not be identified
e Summary
Successfully placed 5 rooms
Available room tag types:
e 1: Name_and_Number
e 2: Name_Number_w-Both_Areas
e 3: Name_Only
e 4: Name_Number_w-Metric_Area
Using tag type: Name_and_Number
Placing tags for 5 rooms...
e Tagging room 'MasterBedroom' at (-6.93, 17.46)
v Tag placed successfully
e Tagging room 'Bedroom2' at (-7.85, 5.89)
v Tag placed successfully
e Tagging room 'Bathroom’' at (-14.89, 19.21)
v Tag placed successfully
e Tagging room 'Kitchen' at (-21.20, 16.56)
v Tag placed successfully
e Tagging room 'Room' at (-19.29, 7.22)
v Tag placed successfully
v/ Placed 5 room tags
Note: If tags are not visible, check:
e View scale (zoom in/out)
e Tag visibility settings in Visibility/Graphics
e Tag type properties (text size, etc.)
2 cCommand 'room_generation' executed successfully

e Summary
Successful: 6

X Failed: o
All commands processed!

C2: DOOR PLACEMENT DIALOGUE

Creating label 'D1' at circle center: (-12.26, 12.94, 0.00)
Successfully created label: D1

Creating label 'D2' at circle center: (-13.02, 8.02, 0.00)
Successfully created label: D2

Creating label 'D3' at circle center: (-17.51, 13.79, 0.00)
Successfully created label: D3

Creating label 'D4' at circle center: (-13.77, 15.27, 0.00)
Successfully created label: D4

Creating label 'D5' at circle center: (-15.32, -0.83, 0.00)
Successfully created label: D5

Saved door mapping to: C:\Users\mursa\AppData\Local\Temp\door_label mapping.json
Successfully placed 5 doors out of 5 circles.

106 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Door Type: Doors_IntSgl : 810x2110mm
Door Labels:

D2 - Element ID: 336375

D4 - Element ID: 336379

D1 - Element ID: 336373

D5 - Element ID: 336381

D3 - Element ID: 336377

C3: WINDOW PLACEMENT DIALOGUE

Creating label 'D1' at circle center: (-12.26, 12.94, 0.00)
Successfully created label: D1

Creating label 'D2' at circle center: (-13.02, 8.02, 0.00)
Successfully created label: D2

Creating label 'D3' at circle center: (-17.51, 13.79, 0.00)
Successfully created label: D3

Creating label 'D4' at circle center: (-13.77, 15.27, 0.00)
Successfully created label: D4

Creating label 'D5' at circle center: (-15.32, -0.83, 0.00)
Successfully created label: D5

Saved door mapping to: C:\Users\mursa\AppData\Local\Temp\door_label mapping.json

Successfully placed 5 doors out of 5 circles.
Door Type: Doors_IntSgl : 810x2110mm

Door Labels:

D2 - Element ID: 336375

D4 - Element ID: 336379

D1 - Element ID: 336373

D5 - Element ID: 336381

D3 - Element ID: 336377

C4: CORRECTIONS COMMAND DIALOGUE

Process All Commands

Debug Info:
e Original TEMP: C:\Users\mursa\AppData\Local\Temp\e53c883c-6738-4f75-ac2a-

a2bf549646bb
e Using temp path: C:\Users\mursa\AppData\Local\Temp
Looking for command queue at:

C:\Users\mursa\AppData\Local\Temp\commands_queue.json
Found 12 commands to process
e Command 1: cycle_doors
Parameters: { "label": "D1", "action": "flip_sideways"}
Executing external command: {'label': 'D1', 'action': 'flip_sideways'}
Flipping door D1 sideways (hand)
2 command 'cycle doors' executed successfully
e Command 2: cycle_doors
Parameters: { "label": "D3", "action": "flip_sideways"}
Executing external command: {'label': 'D3', 'action': 'flip_sideways'}
Flipping door D3 sideways (hand)
2 command 'cycle doors' executed successfully
e Command 3: cycle_doors
Parameters: { "type_name": null, "label": "D4", "action": "change_family"}

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 107
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Executing external command: {'type_name': None, ‘'label': 'D4', ‘action':
'change_family'}
Changing family type for door D4
2 command 'cycle_doors' executed successfully
e Command 4: cycle_doors
Parameters: { "label": "D2", "action": "flip sideways"}
Executing external command: {'label’': 'D2', 'action': 'flip_sideways'}
Flipping door D2 sideways (hand)
4 Command 'cycle_doors' executed successfully
e Command 5: cycle_doors
Parameters: { "type_name": null, "label": "D3", "action": "change_family"}
Executing external command: {'type_name': None, ‘'label': 'D3', ‘action':
'change_family'}
Changing family type for door D3
2 cCommand 'cycle_doors' executed successfully
e Command 6: cycle_windows
Parameters: { "type_name": null, "label": "W3", "action": "change_family"}
Executing external command: {'type_name': None, ‘'label': 'W3', ‘action':
'change_family'}
Changing family type for window W3
2 cCommand 'cycle windows' executed successfully
e Command 7: cycle_windows
Parameters: { "label": "W5", "action": "flip_sideways"}
Executing external command: {'label’': 'W5', 'action': 'flip_sideways'}
Flipping window W5 sideways (hand)
4 Command 'cycle windows' executed successfully
e Command 8: cycle_walls
Parameters: { "label": "WL6", "action": "flip"}
Executing external command: {'label’': 'WL6', ‘'action': 'flip'}
Flipping wall WL6
2 Command 'cycle walls' executed successfully
e Command 9: cycle_walls
Parameters: { "label": "WL7", "action": "flip"}
Executing external command: {'label’': 'WL7', ‘action': 'flip'}
Flipping wall WL7
2 cCommand 'cycle walls' executed successfully
e Command 10: cycle_walls
Parameters: { "label": "WL18", "action": "flip"}
Executing external command: {'label': 'WL18', ‘'action': 'flip'}
Flipping wall WL18
2 Command 'cycle walls' executed successfully
e Command 11: cycle_walls
Parameters: { "label": "WL17", "action": "flip"}
Executing external command: {'label': 'WL17', ‘'action': 'flip'}
Flipping wall WL17
Command 'cycle walls' executed successfully
e Command 12: cycle_walls
Parameters: { "label": "WL9", "action": "flip"}
Executing external command: {'label': 'WL9', ‘'action': 'flip'}
Flipping wall WLS
Command 'cycle _walls' executed successfully

e Summary
Successful: 12

X Failed: o
All commands processed!

108 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

APPENDIX D: CODE SNIPPETS

These code snippets demonstrate the core technical implementations that enable the system's

functionality. The natural language processor shows the pattern-matching approach, the building code

validator illustrates the compliance enforcement mechanism, and the command orchestrator reveals how

multiple operations are coordinated to generate complete BIM models from simple text commands.

D1: NATURAL LANGUAGE PROCESSING ENGINE

PATTERN-BASED COMMAND PARSER:

class NaturallLanguageProcessor:
def __init_ (self):
self.patterns = {

‘bedroom_count': [
r'(\d+)\s*(?:bed|bedroom|br)',
r'(?:studio|efficiency)’,
r'(\w+)[\s-]bedroom’

1

‘area': [
r'(\d+(?:\.\d+)?)\s*(?:square\s*)?(?:meter|metre|m2|sqgm)’,
r'(\d+(?:\.\d+)?)\s*(?:square\s*)?(?:feet|foot|sqft|sf)"’

1

'building code': [
r'(?:use\s+)?(\w+)\s+(?:building\s+)?code’,
r'(?:follow|apply)\s+(\w+)\s+(?:regulations?|standards?)"’

}

def parse_command(self, text):
"""Extract structured parameters from natural language input
command = {}
text_lower = text.lower()

Extract bedroom count
for pattern in self.patterns['bedroom_count']:
match = re.search(pattern, text_ lower)
if match:
if 'studio' in match.group(0):
command['bedrooms’'] = @
else:
num = self. word_to_number(match.group(l))
command['bedrooms'] = num
break

Extract area with unit conversion
for pattern in self.patterns['area']:
match = re.search(pattern, text_lower)
if match:
value = float(match.group(1))
if 'feet' in match.group(®) or 'sqft' in match.group(9):
value = value * 0.092903 # Convert to square meters
command['total_area'] = round(value)
break

return command

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 109
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

def

_word_to_number(self, word):
"""Convert word numbers to integers
word _map = {
‘one': 1, 'two': 2, 'three': 3, 'four': 4,
'single': 1, 'double': 2, 'triple': 3

}

return word map.get(word, int(word) if word.isdigit() else None)

ELEMENT REFERENCE RESOLUTION:

def

def

class ElementResolver:

resolve_element_reference(self, reference, element_mappings):
"""Resolve natural language element references to IDs"""
Direct label reference (e.g., "door D3")
label _match = re.search(r'([DWL]\d+)"', reference.upper())
if label_match:

label = label match.group(1)

return self. find by label(label, element_mappings)

Functional reference (e.g., "main entrance door")
if 'entrance' in reference and ‘'door' in reference:
return self. find_entrance_door(element_mappings)

Spatial reference (e.g., "master bedroom window")
room_match = re.search(r'(\w+\s*bedroom|bathroom|kitchen)', reference)
if room_match:

room_type = room_match.group(1)

element_type = self._extract_element_type(reference)

return self. find_in_room(room_type, element_type, element_mappings)

return None

_find_entrance_door(self, mappings):
"""Identify main entrance based on connectivity analysis
door_scores = {}
for label, data in mappings.get('doors', {}).items():
score = 0
Higher score for exterior walls
if data.get('is_exterior', False):
score += 10
Higher score for larger doors
if data.get('width', @) > 900:
score += 5
door_scores[label] = score

if door_scores:
return max(door_scores, key=door_scores.get)
return None

110 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

D2: BUILDING CODE COMPLIANCE SYSTEM

MULTI-COUNTRY CODE VALIDATOR:

class BuildingCodeValidator:
def __init__ (self):
self.codes_path =
r"C:\MasterThesis\ParametricAIBIMModelling\data\building codes"
self.codes = self. load_all codes()

def load_all codes(self):
"""Load all building code JSON files"""
codes = {}
for file in os.listdir(self.codes_path):
if file.endswith('_code.json"):
country = file.replace('_code.json', '')
with open(os.path.join(self.codes_path, file), 'r') as f:
codes[country] = json.load(f)
return codes

def validate_and_adjust(self, room_params, country code, total area):
Validate room parameters and adjust for compliance"™""
if country_code not in self.codes:

raise ValueError(f"Unknown building code: {country_code}")

code_reqs = self.codes[country_code]
adjusted_params = {}

Calculate minimum required area

min_total = ©

for room_type, params in room_params.items():
room_min = self._get_room_minimum(room_type, code_reqs)
min_total += room_min['area']

Add circulation space (20%)
min_total_with_circulation = min_total * 1.2

if total_area < min_total_with_circulation:
raise ValueError(

f"Area {total_area}m? too small.

f"Minimum required: {min_total_with_circulation:.1f}m2"

)

Calculate scale factor for proportional adjustment
scale_factor = math.sqrt(total_area / min_total_with_circulation)

Adjust each room maintaining proportions

for room_type, params in room_params.items():
room_min = self. get room_minimum(room_type, code reqs)
adjusted_params[room_type] = {

'width': max(room_min[‘width"'] 3 scale_factor,
room_min['width']),

'length’: max (room_min['length'] & scale_factor,
room_min['length'])

}

return adjusted_params

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 111

Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

BUILDING CODE DATA STRUCTURE:

{
"country": "Slovenia",
"code_reference": "Uradni list RS",
"room_requirements": {
"master_bedroom": {
"min_area": 10.0,
"min_width": 2.7,
"min_length": 3.0,
"ceiling height": 2.5
Ts
"bedroom": {
"min_area": 8.0,
"min_width": 2.4,
"min_length": 2.7
¥
"living_room": {
"min_area": 13.0,
"min_width": 3.0,
"natural_light_ratio": @.1
¥
"bathroom": {
"min_area": 3.0,
"min_width": 1.5,
"ventilation": "required"
}
}s
"accessibility": {
"door_min_width": 0.8,
"corridor_min_width": 1.2,
"turning_circle_diameter": 1.5
}
}

D3: PYREVIT PLUGIN COMMAND ORCHESTRATION

MASTER COMMAND PROCESSOR

class CommandOrchestrator:
def __init__ (self):
self.button_scripts

{

'select_template':

'lines_to_walls"':

'adjust_room_sizes':

'Select Template.pushbutton',
'Adjust Room Sizes.pushbutton',
"Lines to Wall.pushbutton',

'place_doors':

'Place Doors.pushbutton',

'place_windows':

'Place Windows.pushbutton'

}
self.state = CommandState()

def process_command_queue(self, commands):
"""Process all commands with intelligent sequencing
results = []

for cmd in commands:
try:
Accumulate state for multi-part commands
if cmd['type'] in ['set_area', 'set building code']:

112 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

self.state.update(cmd['parameters'])

Check if we have enough info to proceed
if self.state.has_required_params():
self. execute_room_adjustment()

Direct execution commands

elif cmd["type'] == 'select_template’:
result = self._ execute_template_selection(cmd['parameters’'])
results.append(result)

Element modification commands

elif cmd['type'].startswith('modify_"):
result = self._ execute_element_modification(cmd)
results.append(result)

Cascading operations
elif cmd['type'] == 'lines_to_walls':
wall result = self. execute_script('lines_to_walls"',
cmd["parameters'])
results.append(wall result)

Automatically trigger room generation
room_result = self. execute_script('room_generation', {})
results.append(room_result)

except Exception as e:
results.append({
‘command’: cmd['type'],
'status': 'error',
'message’: str(e)

1)

return results

def _execute_script(self, script _name, parameters):
"""Dynamically import and execute button scripts
Write parameters for script to read
param_file = os.path.join(temp_dir, 'button_parameters.json')
with open(param_file, 'w') as f:
json.dump(parameters, f)

Import and execute the script

script_path = self. get script_path(script_name)

spec = importlib.util.spec_from_file location(script_name, script_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)

Read results if available
result file = os.path.join(temp_dir, f'{script_name} result.json')
if os.path.exists(result_file):
with open(result_file, 'r') as f:
return json.load(f)
return {'status': 'completed'}

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 113
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

ELEMENT MODIFICATION HANDLER

def execute_element_modification(self, element_label, action, parameters=None):
"""Direct element manipulation bypassing UI"""

Load element mappings

mapping files = {

'D': 'door_label mapping.json',
'"W': 'window_label mapping.json’,
'"WL': 'wall_label mapping.json'
}
element_type = element_label[9] if element_label[0Q] I= "W’ else

element_label[:2]
mapping_file = os.path.join(temp_dir, mapping_ files.get(element_type))

with open(mapping_file, 'r') as f:
mappings = json.load(f)

if element_label not in mappings:
raise ValueError(f"Element {element_label} not found")

element_id = ElementId(int(mappings[element_label]['id"']))
element = doc.GetElement(element_id)

with Transaction(doc, f"Modify {element_label}") as trans:
trans.Start()

if action == 'flip':
if hasattr(element, 'Flip'):
element.Flip()
elif hasattr(element, 'FlipHand'):
element.FlipHand()

elif action == 'change_type' and parameters:
new_type = self. find_type_by name(parameters.get('type_name'))
if new_type:

element.ChangeTypeId(new_type.Id)

elif action == 'delete’:
doc.Delete(element_id)

trans.Commit()

return {'element': element_label, 'action': action, ‘status': 'success'}

114 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

APPENDIX E: MODEL GENERATIONS

Figure 53: One Bedroom Model, Generated using External Ul

Figure 54: One Bedroom Model, Placed Doors and Windows

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+

LivingRoom

Figure 55: One Bedroom Model, Before
Corrections

115

MasterBedroom —

wiL3|
e
| WL12
i 4
L... \-' mi"uo |3 _
" N] |
i 2
DiningRoom
‘ wv:fD LS|
— !.L_‘I D‘d | LE] i —
I
I
|W4
] 1
' LivingRoom

Figure 56: One Bedroom Mode, After
Correction

Figure 57: One Bedroom Mode, After Correction

116 Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces.
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

.

é_
Py

—
@&

-

Figure 58: Four Bedroom Model, Generated using External Ul

Figure 59: Four Bedroom Model, Placed Doors and Windows

Chy, Ashiqul Mursalin. 2025. Parametric Generation of Standardized Spaces. 117
Master Thesis. Ljubljana,UL FGG, Second Cycle Master Study Programme Building Information Modelling, BIM A+.

Figure 60: Four Bedroom Model, After Corrections

