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RESUMO

Os métodos tradicionais de QA/QC baseiam-se principalmente em inspe¢des manuais ou visuais, que
sdo demoradas, subjetivas e propensas a erro humano. A automatizacao do QA/QC através da integragao
de Inteligéncia Artificial (IA), particularmente durante a fase de execugdo, contribui para garantir a
conformidade, minimizar repeti¢cdes de trabalhos e melhorar os resultados dos projetos.

Nesta investigacdo ¢ feita uma revisdo da literatura sobre o estado atual das tecnologias digitais e das
aplicagoes de IA em QA/QC, desenvolve uma metodologia para integrar a IA em QA/QC com especial
enfoque na triplet network of the Siamese architecture ¢ aplica essa metodologia num estudo de caso
utilizando dados reais de um projeto de construgdo. O conjunto de dados € constituido por imagens “as-
built” e imagens de modelos BIM “as-designed”, recolhidas através de uma plataforma de visdo

computacional.

O estudo de caso investiga um modelo de IA (a Siamese network with triplet loss) para comparar a
similaridade entre imagens “as-built” e modelos BIM “as-designed”. O modelo ¢ treinado e avaliado em
conjuntos de dados pequenos e grandes, sendo a sua precisdo analisada em termos de capacidade de
generalizagdo ¢ potencial de aplicagdo em tarefas reais de QA/QC. Os resultados demonstram o
potencial das arquiteturas baseadas em redes Siamese para automatizar a dete¢do de inconsisténcias
entre o0 projeto € a execucao, proporcionando uma base para a futura integragdo da A na gestdo da

qualidade em construgao.

Palavras chave: as-built, as-designed, 1A, QA/QC, Siamese Network, triplet loss

European Master in Building Information Modelling BIM A+ \



Al for QA/QC in construction. A Siamese Network with Triplet Loss

ABSTRACT

Traditional QA/QC methods largely rely on manual or visual inspections, which are time-consuming,
subjective, and prone to human error. Automating QA/QC by integrating Artificial Intelligence (Al),
particularly during the execution phase, helps ensure compliance, minimize rework, and improve project
outcomes.

This research conducts a literature review on the current state of digital technologies and Al applications
in QA/QC, develops a methodology for integrating Al into QA/QC with a particular focus on the triplet
network of the Siamese architecture, and applies this methodology in a case study using real construction
project data. The dataset consists of as-built site imagery and as-designed BIM model imagery collected
through a computer vision platform.

The case study investigates an Al model (a Siamese network with triplet loss) to compare the similarity
between as-built site imagery and as-designed BIM models. The Al model is trained and evaluated on
both small and large datasets, and its accuracy is assessed in terms of generalization ability and potential
for real-world QA/QC tasks. Results demonstrate the potential of Siamese-based architectures to
automate the detection of inconsistencies between design and execution and provide a foundation for
future integration of Al in construction quality management.

Keywords: Al, as-built, as-designed, QA/QC, Siamese Network, triplet loss
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1. INTRODUCTION

The terms quality assurance (QA) and quality control (QC) are often used interchangeably. Since QC
is part of QA, maintaining a clear distinction between the two is not always straightforward. QA is
defined as all planned and systematic actions necessary to provide confidence that a structure, system,
or component will perform satisfactorily and conform to project requirements. QC, on the other hand,
refers to the specific procedures involved in the quality assurance process. These procedures include
planning, coordinating, developing, checking, reviewing, and scheduling the work. Quality is achieved
when individuals perform their tasks carefully and in accordance with project requirements (O’Brien,
1989). In the construction industry, QA and QC have long faced inefficiencies due to their reliance on
manual inspections. As construction demands increase and projects become more technologically
advanced, the need for innovative QA/QC methods that enhance precision and efficiency has become
urgent (Toyin and Sattineni, 2025).

The main aim of this research is to address inefficiencies in QA/QC processes, particularly during the
execution phase. The study seeks to enhance QA/QC by integrating Artificial Intelligence (Al) to
automate defect detection. To achieve this, an Al model—a Siamese network with triplet loss—will be
implemented to compare as-built site imagery with as-designed BIM models. The model will be trained
and evaluated on both small and large datasets, and its accuracy will be assessed in terms of
generalization ability and potential for real-world QA/QC tasks. The central focus of this study is
therefore the automation of comparing as-built data with as-designed models using Al

This research is conducted in collaboration with BIMMS, a company specialized in Integrated
Engineering Services through Digital Construction. The company uses a platform based on computer
vision, which provides access to imagery from drones, 360° cameras, mobile devices, and laser scanners.
This platform represents an advanced digital construction tool, as it enables remote visual visits to
construction sites and aligns real-world conditions with BIM. It adds significant value to QA/QC by
facilitating remote visual inspection and progress monitoring. Nevertheless, even when conducted
remotely, visual inspection remains time-consuming and prone to human error. Against this backdrop,
the research aims to increase the level of automation in QA/QC tasks, moving beyond exclusively visual
methods.

The study will adopt a diverse approach consisting of a literature review, a methodology chapter, and a
case study with empirical analysis in order to fulfil its objectives. The literature review will begin by
emphasising the limitations of traditional methods and the potential of advanced digital technologies in
QA/QC. It will then highlight Al-driven solutions in particular and identify research gaps in existing
studies. Finally, the review will classify case studies into categories of digital innovations for QA/QC
in construction projects—such as additive manufacturing, advanced inspection and tracking, and data
analytics. For each category, the case studies will be summarised by specifying their objectives, the Al
tools used, the results obtained, and the identified gaps.

European Master in Building Information Modelling BIM A+ 1
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The methodology will address two components of the case study. The first concerns the future choice
of the Al model and will therefore introduce the concepts related to Al. The second will focus on the
preparation of the dataset, beginning with its origin in a computer vision platform and followed by data
processing. This part will describe the techniques applied to improve both the visual quality of the
images and the model’s ability to detect relevant features.

The chapter will begin by defining concepts related to Artificial Intelligence (Al). It will provide a
general introduction to Al and explain its main subfields, namely Machine Learning (ML) and Deep
Learning (DL). The discussion will then examine Artificial Neural Networks (ANNs) as a class of ML
methods, preparing the ground for an explanation of Convolutional Neural Networks (CNNs). CNNs
are deep ANNs designed to process grid-structured data, such as pixel-based images, and they will serve
as subnetworks within more advanced models such as the Siamese network.

The following subchapter will focus on the Siamese network, which will constitute the core of the final
Al 'model. It will outline its evolution and applications, leading to the introduction of the triplet network,
which belongs to the Siamese family but extends the approach to three inputs. The choice of the Siamese
network will be justified by its ability to compare two outputs: the as-designed and as-built data. In
practice, these outputs will consist of pairs of images extracted from the computer vision platform: one
representing a site image and the other the aligned BIM image.

Subsequently, this chapter will introduce the computer vision platform used in the study. It will explain
its functionalities for the construction industry, as well as the technologies implemented, before
concluding with a discussion of the tool’s limitations, particularly in relation to the QA/QC field. This
chapter will conclude by presenting the processing of the extracted data, explaining the selection of
images, the challenges encountered, and the techniques applied to frame the images.

The case study chapter will present the practical part of this research, including the obtained results and
their analysis. Following this logic, the chapter will begin by introducing the construction project from
which the dataset will be prepared, namely a large-scale data center project. It will then provide details
of this dataset, justify the choice of image pairs related to the project, and demonstrate the
implementation of the data processing described in the methodology chapter.

Subsequently, the chapter will develop the workflow of the Al model step by step. It will begin with an
introduction to the model and an explanation of its triplet network design, which aims to learn visual
similarity by training on triplets of images: an anchor representing the site image, a positive representing
the corresponding image from the BIM model, and a negative generated by shuffling site and BIM model
images. The chapter will then detail the setup of the model, explaining the required libraries. Next, the
preparation of the data will be described, from resizing images to preprocessing the triplets and
visualising them. The workflow will explain the setup of the Siamese model, starting with the creation
of the embedding model, which converts images into vectors, and continuing with the Siamese model
itself, which calculates the squared distances between the anchor—positive and anchor—negative
embeddings. Using the prepared triplet dataset, the model will then be trained with a triplet loss function
that encourages the network to bring similar images closer together while pushing dissimilar ones further
apart. Finally, the model’s accuracy in distinguishing between similar and dissimilar images will be
evaluated.
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The last section of this chapter will analyse the results. First, the model will be trained on a small dataset,
and the training/validation loss will be evaluated over epochs. Second, the dataset will be increased and
undergo the same evaluation in order to track possible overfitting. Finally, the accuracy results will be
assessed on both the small and the large datasets to measure how often the model makes correct
predictions.

European Master in Building Information Modelling BIM A+ 3
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2. LITERATURE REVIEW

This literature review follows a structured methodology, starting with a global overview and moving
toward a targeted thematic analysis. It begins by framing the field of QA/QC in construction,
emphasising the limitations of traditional methods and the potential of advanced technologies,
particularly Al-driven solutions. It subsequently identifies research gaps in existing studies. Based on
these digital technologies, the literature review classifies case studies into categories such as additive
manufacturing, advanced inspection and tracking, and data analytics. For each category, pertinent case
studies are summarised by specifying the objectives, the Al tools used, the results obtained, and the
identified gaps. Finally, a synthesis highlights the recurring challenges and provides insights for
potential enhancements and future research.

2.1. QA/QC and Digital technologies:

Quality Assurance (QA) and Quality Control (QC) are crucial in the construction industry to ensure that
projects meet standards for safety, functionality, and durability. The growing complexity and scale of
modern projects, combined with the implementation of digital technologies in construction processes,
make traditional QA/QC methods—often relying on manual inspections and reactive measures—
insufficient to meet the evolving demands of the industry (Tang et al., 2022; Toyin et al., 2025).

Manual inspections in QA/QC are time-consuming and costly in the construction industry. These
inefficiencies, combined with increasing construction demands and the growing technological
complexity of projects, create an urgent need for innovative QA/QC methods that enhance precision and
efficiency. Toyin (2025) presents a study showing that, although attempts have been made to integrate
technology into QA/QC practices, gaps remain in understanding precision and efficiency, as well as in
documenting and synthesising these advancements.

Traditional methods lack the accuracy and efficiency necessary to manage today’s high-risk
construction environment (Blinn et al., 2017). Therefore, there is a growing and critical demand for
innovative approaches that leverage digital technologies to transform quality management processes
(Faybishenko et al., 2022). Emerging technologies such as Non-Destructive Testing (NDT), Building
Information Modelling (BIM), Terrestrial Laser Scanning (TLS), and big data analytics are at the
forefront of this transformation (Hoegh et al., 2011; Liu and Wen, 2023; Oliveira et al., 2023).

Technological advancements, their applications, and future opportunities show that TLS and BIM
enhance inspection accuracy and reduce both time and labour costs, while Al-driven NDT improves the
accuracy of defect detection. However, challenges remain, such as the complexity of data processing
and difficulties in integration. It is suggested that more precise practical applications of these
technologies could make QA/QC more data-driven and efficient. The construction industry can take
advantage of these findings to optimise quality management.
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2.1.1. Global Research Trends in Digital Technologies for QA/QC

Toyin (2025) suggests that research in this domain has been predominantly driven by contributions from
three continents: Asia, North America, and Europe. Figures 1 and 2 show that from 2011 to 2024, China
ranks first, with affiliations in eight papers, followed by the USA with six and Germany with five. The
United Kingdom contributed three papers, while Singapore and Portugal each had two affiliated papers.
Other countries, such as Greece, Sri Lanka, Austria, Slovenia, Switzerland, Sweden, Canada, and
Russia, were each associated with only one paper.

s Hsg H5 H3 H2 N1

Figure 1 — Countries with affiliated articles (Toyin, 2025)

2021

Yoars

2019

2016

2011

Figure 2 — Number of publications from 2011 to 2024 (Toyin, 2025)
2.1.2. Advanced Digital Technology Integration in QA/QC

The study by Toyin (2025) shows that advanced digital technologies have added value to QA/QC
processes in the construction industry. He proposed a classification of these technologies into six groups:
Non-Destructive Testing (NDT) Methods, Additive Manufacturing & Material Assessment, Real-Time
Monitoring & Embedded Systems, Digital Construction Platforms, Data Analytics & Communication
Tools, and Advanced Inspection & Tracking Systems. In addition, he highlighted their practical
applications, such as high-precision inspection capabilities, the fabrication of complex components with
high accuracy, and the reduction of errors while improving communication among project stakeholders.
Table 1 summarises this classification and the contribution of each technology group to QA/QC in the
construction field.
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Table 1 — Key Digital Innovations for QA/QC in Construction Projects (Toyin, 2025)

Technology Group Technologies Application in QA/QC
These technologies provide non-invasive, high-
precision  inspection  capabilities.  Ultrasonic
) Tomography detects internal anomalies like
- Ultrasonic T .
Technology Group T b delamination in concrete structures, ensuring safety
omogra
Testing (NDT) grp Y and durability. TLS automates geometric quality
- Terrestrial Laser . . . .
Methods . inspections, capturing 3D point clouds to measure
Scanning (TLS) . . o
deviations  with  millimeter-level  accuracy,
significantly reducing time compared to manual
inspections.
3D Printing is used for fabricating complex
components with high precision, ensuring real-time
Additive - 3D Printing quality control during the printing process. NIR
Manufacturing & - Near-Infrared Technology evaluates critical properties of
Material (NIR) engineered wood, such as moisture content and
Assessment Technology surface quality, providing rapid, non-invasive quality
assessments. Both technologies focus on improving
material quality and ensuring structural integrity.
Embedded Sensors continuously monitor structural
and environmental parameters, enabling automated,
Real-Time - Embedded ,V i .p , gau
L. real-time quality inspections through cloud-based
Monitoring & Sensors . . .
) platforms. IT-Driven Systems facilitate efficient
Embedded - IT-Driven . . . .
information flow and visual management, reducing
Systems Systems . ) . .
errors and improving communication among project
stakeholders.
BIM provides a 3D collaborative environment for
integrating project data, supporting proactive quality
. management and early issue resolution. Digital Twin
Digital - BIM . . . .
) . ) Technology extends this by offering real-time virtual
Construction - Digital Twin . . ) o
replicas of physical structures, enhancing predictive
Platforms Technology . . i .
maintenance and decision-making. Both technologies
streamline quality control and optimize resource
allocation.
Big Data and Mobile-ICT platforms support
Data Analytics & . . .
A - Big Data & predictive QA/QC through comprehensive data
Communication Mobile-ICT analysis, improving decision-making and resource
Tools - Mobile optimization. Mobile Apps and 3D Point Clouds

enhance field inspections, providing precise site
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Applications & models and facilitating instant data access and
3D Point Clouds  reporting.

LiDAR offers high-accuracy mapping for verifying
structural alignments, while Drones capture site

Ad d - LiDAR images for aerial inspections. RFID tags track
vance
. - Drones, RFID, material movement, and AR assists in visualizing
Inspection & i ) o i
. & Augmented quality issues and verifying construction tasks
Tracking Systems ) ) . . )
Reality (AR) interactively.  These  technologies  streamline

inspections and improve tracking and verification
processes.

2.1.3. Challenges and gaps in Modern Technology Integration in QA/QC

The implementation of advanced digital technologies in QA/QC has led to improvements in inspection
accuracy, streamlined workflows, and reductions in labour and time costs. However, the field still faces
several challenges, including data processing complexities, interoperability limitations, and high
implementation costs. The interpretation of the previous digital technologies classification reveals, for
instance, that although drones enhance site inspections, they also present operational and regulatory
challenges, limited battery autonomy, dependency on weather conditions, and restricted capabilities for
Al-based defect detection. Similarly, while Al-driven defect detection can significantly improve
accuracy, it demands substantial computational resources, raises ethical and accountability concerns,
and may result in false positives or negatives. These factors contribute to the ongoing challenges of
effectively integrating drones and Al into QA/QC processes in the construction industry.

Future research intentions include deploying autonomous inspections, developing AR-BIM-based
inspection models, enhancing Al-driven analytics, and implementing quantum-secured data
transmission to create self-regulating quality control systems. According to Toyin (2025), some
potential directions for future research include:

- Automation and Intelligent Systems: analysing the use of drones equipped with advanced
sensors and Al to monitor construction sites in real time, with a focus on the accuracy and
efficiency of quality inspections. Developing self-operating robots and drones for real-time
quality inspections while minimising human involvement. Creating machine learning
algorithms capable of predicting potential quality issues and optimising QA/QC practices
through the analysis of historical and real-time data. Guiding future research toward advanced
models based on computer vision and Al that can accurately identify and classify defects in
construction components using image and video data.

- Advanced Technology Integration: investigating how quantum computing can be used to
address the challenge of optimising QA/QC and ensuring the secure transmission of data for
records and inspection reports. Leveraging the integration of digital twins into QA/QC
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workflows, focusing on how real-time data from digital models can enhance QC processes and
support better decision-making. Furthermore, evaluating the potential of AR to assist QA/QC
inspections by providing real-time overlays of construction specifications and defect

visualisations.

- Fully Autonomous Inspections: QA/QC processes will be conducted by autonomous drones,
robots, and smart sensors deployed on construction sites. These systems will continuously
inspect quality by comparing real-time data with digital models and project specifications.
Construction equipment will have the capacity to automatically correct detected errors using
quality monitoring systems. For instance, robotic arms will be able to adjust their own
calibration based on sensor feedback to ensure high accuracy and precision in construction
processes.

- Al and Machine Learning: analysing vast amounts of data to predict potential quality issues is
expected to become increasingly reliable thanks to Al and machine learning. Al-powered image
recognition will detect anomalies and non-conformance through video and image analysis.

The following subsection focuses on Al solutions implemented in QA/QC to enhance automation,
efficiency, and accuracy—particularly in defect detection, safety monitoring, and predictive quality
control—while also highlighting existing research gaps.
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2.2. QA/QC and Al

The construction industry is a field where the advancement of Artificial Intelligence (Al) creates new
opportunities. Al and machine learning are key areas of innovation in making construction “smart.”
Applying machine learning in construction offers significant potential, particularly in site supervision,
automatic detection, and intelligent maintenance.

A notable milestone in this development was the introduction of AlexNet in 2012, a deep neural network
that significantly advanced image classification using deep learning. This sparked a wave of research in
computer vision, leading to a steady increase in related publications. As illustrated in Figure 3, the
number of papers referencing AlexNet for image classification in construction rose consistently between
2008 and 2020, with a sharp growth trend beginning in 2016 (Xu et al., 2021).
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Figure 3 — Number of publications from 2008 to 2020 introducing AlexNet for image
classification (Xu, Y, 2021)

Since 2017, the notable performance of deep learning in computer vision has led to its large-scale
implementation in various construction fields, such as safety (Fang et al., 2018, 2019; Wu and Cai,
2019), road surveying (Zhang and Yang, 2016; Wu et al., 2019), bridge inspection (Deng et al., 2020;
Dorafshan and Azari, 2020; Zhang and Yang, 2020), and on-site operation monitoring (Fang and Li,
2018a; Fang and Ding, 2018; Guo et al., 2020). Research distribution varies geographically. As shown
in Figure 4, Chinese researchers predominantly focus on safety management, likely due to the country’s
massive infrastructure investments—reported to have reached USD 2.6 trillion in 2018, representing
19.6% of national GDP (China National Bureau of Statistics). In contrast, researchers in the United
States demonstrate a more diversified focus across QA/QC topics.
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Figure 4 — The relative participation of countries in diffrent application fields (Xu, Y, 2021)

One key observation in the literature is that image data remains the dominant source for applying deep
learning in construction. This is largely attributed to the high performance of deep learning in image
processing, while other data types are used less frequently. As shown in Figure 5, the most commonly
implemented deep learning algorithms are Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and transfer learning approaches. Current research interest is particularly focused on
Faster R-CNNs and Long Short-Term Memory (LSTM) networks.

CNNs Il Bridge inspection
Faster R-CNN I Sewer inspection
LSTM m Safety related issues
RNNs . Detection of people
Transfer learning N Crack detection
Object detection Real-time prediction
Semantic segmentation BN Structural health monitoring

Figure 5 — Research field: algorithm (left) and applications (right) (Xu, Y, 2021)

While the primary implementation of object detection and image segmentation models in construction
focuses on defect detection—particularly in concrete crack recognition and bridge inspection—visual
characteristics vary across applications. As a result, there is no single algorithm or network structure
that is universally applicable. Researchers must therefore select and adapt algorithms and network
architectures to address specific construction challenges. In this context, Al has also been applied in
various other fields beyond construction. For example, Siamese networks have been used for image
matching (Melekhov et al., 2016), real-time tracking (He et al., 2018), and object tracking (Zhang et al.,
2017). This type of neural network will be further discussed in the methodology chapter due to its
relevance to the present study.
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2.3. Al implementation in Digital technology for QA/QC (case studies)

Building on the interpretation provided in the previous section, which outlined the role of digital
technologies and Al implementation in QA/QC, this section organises selected case studies according
to the previously defined classification of digital technologies implemented for QA/QC. For each
category, several Al models will be presented, along with a brief description of their specific
applications, strengths, and limitations. This approach not only illustrates the practical implementation
of these technologies in real-world construction projects but also highlights the diversity of methods and
contexts in which Al is applied to enhance quality assurance and quality control processes.

2.3.1. Additive Manufacturing & Material Assessment

Sri Kalyan (2016) proposes a real-time quality assessment pipeline in Additive Manufacturing (AM). It
includes laser scanning to generate point clouds, rasterisation to convert point clouds into height maps,
and analysis with a multi-region Hybrid Convolutional Auto-Encoder (HCAE) to detect under-printed
and over-printed zones. The study aims to develop an Al-based system capable of detecting and
mitigating printing abnormalities in real time and performing in-situ adjustments to enhance the final
quality of printed parts. The main challenges to ensuring reliable and repeatable printing are:

- Systematic and random errors
- Lack of real-time monitoring and control
- Difficulty in maintaining optimal process parameters layer by layer

Table 2 — Case studies for Additive Manufacturing & Material Assessment

Technology Digital . Application in
Refrence Al implemented
Group Technology tool QA/QC
Additive )
. (Sri Kalyan, )
Manufacturing & ) Detect print
i 2016) - AM Laser scanning HCAE
Material defects

defect detection
Assessment
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2.3.2. Advanced Inspection & Tracking Systems

Digital technologies play an important role in streamlining inspections and improving tracking and
verification processes. For instance, LiDAR enables high-accuracy mapping for verifying structural
alignments, while drones capture site images and enable aerial inspections. Additionally, RFID tags
track material movement, and AR helps visualise quality issues and interactively verify construction
tasks (Toyin, 2025).

(Ahmad W, 2021) analyses the application of supervised machine learning techniques such as Bagging,
AdaBoost, Decision Tree, and Gene Expression Programming to predict compressive strength (CS)
containing supplementary cementitious materials (SCM) like fly ash and blast furnace slag. To validate
the models, the study implemented k-fold cross-validation and sensitivity analysis. Strong predictive
capability was shown, with the best performance achieved by the Bagging model. This provides a
solution to reduce dependence on time-intensive physical testing in QA/QC in construction. However,
the accuracy of ML predictions varies depending on the type of model used, the number and quality of
input features, and the data volume. This makes it difficult to generalise models across different datasets.

(Chou, 2022) proposes the Metaheuristics-Optimized Stacking System (MOSS), a predictive framework
for estimating scour depth at bridge piers. MOSS combines the Forensic-Based Investigation (FBI)
optimisation algorithm with two base models: Least Squares Support Vector Regression (LSSVR) and
Radial Basis Function Neural Network (RBFNN) across a stacking ensemble architecture. MOSS
achieves significant accuracy gains compared to single ML models, voting ensembles, hybrid methods,
empirical equations, and mathematical approaches, by simultaneously optimising all hyperparameters
of the constituent models. When tested on laboratory, field, and complex pier datasets, MOSS achieved
up to 41% lower prediction errors compared to other approaches. The complexity of scour processes,
the limitations of empirical formulas, and the need for adaptable, high-accuracy models across diverse
environments are the key challenges addressed.

(De Filippo, 2023) worked on inspections of concrete fagades to ensure the safety and sustainability of
ageing structures. Traditional approaches, which are mainly qualitative, are time-consuming, expensive,
and dependent on human expertise (Kwan & Wong, 2005). Drone integration (UAV) facilitates access
to difficult zones and accelerates the collection of visual and thermal data (Mavromatidis et al., 2014).
Through both computer vision and deep learning, the collected data enabled automatic pathological
defect detection such as cracks, delamination, stains, leakages, debonding, and moisture ingress. This
represents a rapid and scalable quantitative approach. Visual detection relied on a model combining
RetinaNet with ResNet50 and FPN for macro inspection, while detailed evaluation of defects was
realised through a Fully Convolutional Network (FCN-8) with VGG16 for micro inspection. For thermal
anomalies, a visual computer approach was implemented with thermal outline detection. However, the
authors highlight certain limitations of this study, notably the restricted dataset, false positives related
to irrelevant objects, reflections on window glass, and poorly collected data, as well as the necessity to
continuously enrich the dataset to improve Al model generalisation.

(The study purpose of Katsamenis, 2023) is to develop an automated, fast, and reliable method to detect
road defects in real time from drone images, enhancing safety and reducing inspection and maintenance
costs. It implements a YOLOVS object detection model trained on UAV (drone) images to classify and
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detect road defects (cracks and potholes). The images were processed and trained on a GPU, and the
model’s performance was evaluated using loU.

(Ma, 2022) proposes an Al system based on deep learning (YOLOvV3) to identify painting defects on
large steel plates in shipyards. It offers an alternative to traditional visual inspections that rely on
workers. The model was trained on around 4,000 images, reached 90% accuracy, and was integrated
with a PLC to ensure automatic detection of defects and to stop the conveyor in case of problems. This
solution increased productivity by 11% and reduced quality incidents to 1%. It represents a step toward
intelligent industry. Future improvements are expected to enhance accuracy through segmentation and

data augmentation.

(Raoofi, H. and Motamedi, A., 2020) worked on a deep-learning-based computer vision method to detect
and segment excavators and dump trucks on construction sites using Mask R-CNN. To address the
challenge of a small dataset, they employed transfer learning from the Microsoft COCO dataset. The
model effectively leveraged pre-trained feature extraction, and fine-tuning was applied to enhance
accuracy and reduce validation loss. The approach targeted automation of progress monitoring, enabling
more efficient and accurate tracking of heavy machinery. Key challenges included the limited size of
the training dataset, high variability of jobsite conditions, and the difficulty of balancing segmentation
accuracy with processing speed.

Table 3 — Case studies for Advanced Inspection & Tracking Systems

Digital

Technology Technol ALimol ted Application in
echnolo implemente
Group Reference gy P QA/QC
tool
(Ahmad ) Predict concrete
Bagging, AdaBoost, .
W,2021) - ML - . compressive
Decision Tree, GEP
for concrete CS strength
(Chou, 2022) — )
MOSS (LSSVR + RBFNN  Predict scour
Scour depth - o
. + FBI optimizer) depth
prediction
De Fili
(De Filippo, , Detect facade
Advanced 2023) — Fagade - RetinaNet+ResNet50+FPN, defects
Inspection ~ defects FCN-8+VGG16
& Tracking :
(Katsamenis,
Systems Detect
2023) - UAV UAV YOLOVS
cracks/potholes

road defects
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(Ma, 2022) —
Shipyard PLC YOLOvV3
painting defects

Detect painting
defects

(Raoofi, 2020)
i Mask R-CNN + transfer .
— Machinery - ) Track machinery
i learning (COCO)
detection

(Sri Kalyan,

2016) —

Additive . Detect print
) Laser scanning HCAE

manufacturing defects

(AM) defect

detection

2.3.3. Data Analytics & Communication Tools:

Big Data and Mobile-ICT are technologies that enable predictive QA/QC through comprehensive data
analysis, enhancing decision-making processes and improving resource optimisation. Mobile apps and
3D point clouds, on the other hand, provide precise site models and facilitate both reporting and data
access.

(Braun, 2019) implements inverse photogrammetry and 4D BIM to automate site image labelling for
machine learning applications. UAV-captured images are used to reconstruct 3D point clouds of the
construction site, which are then aligned with the BIM model to project semantic data of elements onto
2D corresponding images. This approach enables the automated generation of labelled datasets of high
quality for computer vision models. The challenges of this study arise from missing or occluded data—
particularly when temporary structures such as scaffolding obscure elements in the scene.

(Braun, 2020) proposes a BIM-integrated machine learning approach to enhance automated construction
progress monitoring. By combining Structure from Motion (SfM) for 3D reconstruction with BIM’s
semantic and temporal knowledge, the method projects as-planned building elements into image space
and applies machine learning-based object detection to verify actual progress. This integration enables
a detection improvement of up to 50% compared to purely geometric as-planned vs. as-built
comparisons, especially in scenarios with occlusions and reconstruction inaccuracies. The approach
addresses limitations in current progress monitoring, which often ignores semantic context and suffers

from incomplete detection in large, complex sites.

(Serradilla, 2022) presents a review of deep learning models applied to predictive maintenance (PdM).
This technology helps identify the most suitable architectures for different steps: anomaly detection,
diagnosis, prognosis, and mitigation. The study is based on the analysis of 87 publications that appeared
between 2016 and 2021 in scientific databases such as Scopus and IEEE Xplore. It classifies the works
according to the PdM stage and the type of architecture used (CNN, RNN, LSTM, autoencoders, GAN,
SOM). The main contributions are the complete classification of models, the integration of less-explored
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techniques such as SOM, OC-NN, and generative models, and the highlighting of strategies to manage

data variability and the lack of failure data, especially through transfer learning and ensemble learning.

The study also introduces the often-neglected mitigation phase. The review explains the main limits of

this technology: the data are limited, and the models are still complex and not easy to understand. This

study is relevant to my dissertation topic because predictive maintenance approaches can be adapted for

defect detection and problem anticipation in construction.

Table 4 — Case studies for Data Analytics & Communication Tools

Technology Digital T
) Application in
Refrence Technology Al implemented
QA/QC
Group tool
(Braun, 2019) —
BIM Inverse photogrammetry ML dataset Generate
photogrammetry  + 4D BIM generation training data
. labelling
Data Analytics
& (Braun, 2020) —
Communication g\ and
Tools machine learning  SfM + BIM ML detection  Verify progress
for construction
progress
Classification
CNN, RNN, d i
(Serradilla, 2022) ane comparison
LSTM, of deep learning
— DL model
. . Autoencoders, models for
classification for
. ) GAN, SOM, anomaly
PdM tasks Predictive maintenance _
) ) OC-NN, detection,
including platforms ) )
Transfer diagnosis, and
anomaly . e
. Learning, mitigation
detection and
. Ensemble phases of
mitigation .
Learning QA/QC
workflows
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2.3.4. Digital Construction Platforms

These technologies streamline quality control and optimise resource allocation. BIM enables proactive
quality management through a 3D collaborative environment, providing early issue resolution, while
Digital Twin technology enhances predictive maintenance and decision-making by delivering real-time
virtual replicas of physical assets.

(Kayhani, McCabe, and Sankaran, 2023) developed an innovative approach to evaluate the quality of
construction elements in complex building-site environments. The purpose of their study is to overcome
the limitations of classic methods that directly compare as-designed BIM models with 3D point clouds,
which are often affected by noise, occlusions, and partial observability of elements. To achieve this, the
authors implemented BIM-GNN, based on a Graph Neural Network (GNN). The methodology relies on
three key components: BIM2Graph, which converts the BIM into a graph whose nodes represent objects
and whose edges represent their topological and spatial relationships; Ifc2vec, which encodes IFC
classes into vectors to better exploit semantic relationships; and BIM-GNN, which classifies each
element into one of four quality states: verified, deviated, missing, or no data. The results show a 20—
27% improvement in the weighted F1-score compared to conventional approaches and demonstrate the
model’s ability to infer the state of partially observed or unobserved elements. Nevertheless, this method
remains dependent on BIM data quality, requires a minimum amount of labelled data for learning, and
can lead to confusion between “missing” and “no data” classes.

(Wei, 2022)’s study presents a deep learning approach implementing image segmentation for the
automated progress assessment of walls on a whole floor, with direct integration of results into the BIM
environment. The method was tested on a real case in China, particularly on plastering activities. It
reached a high segmentation accuracy (mean average precision of 96.8%). With enhancements applied
to Mask Region-Based Convolutional Neural Network (Mask R-CNN), its performance was compared
with other models.

Table 5 — Case studies for Digital Construction Platforms

Technology Digital . Application in
Reference Al implemented
Group Technology tool QA/QC
(Kayhani,
McCabe, and BIM-GNN, BIM2Graph, GNN Classify element
Digital Sankaran, 2023)- Ifc2vec quality
Construction BIM-GNN QA
Platforms
(Wei, 2022) - )
) Mask R-CNN + BIM Track plastering
BIM plastering ) ) Mask R-CNN
integration progress
progress
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2.3.5. Real-Time Monitoring & Embedded Systems

Embedded sensors continuously monitor structural and environmental parameters, enabling automated,
real-time quality inspections through cloud-based platforms. IT-driven systems facilitate efficient
information flow and visual management, reducing errors and improving communication among project
stakeholders.

For indoor construction progress monitoring, (Ekanayake et al., 2024) focus on automation using the
instance segmentation framework with deep learning. To detect and quantify the installation progress of
interior drywalls and interior separations, Mask R-CNN was implemented using construction site
images. Data was manually labelled for model training. Challenges faced include occlusions and lighting
variations, which affected the model’s ability to generalise. This study highlights the higher complexity

of interior spaces compared with exterior ones.

(Li, J. et al., 2021) propose a computer vision-based productivity evaluation method using CenterNet
with a DLA-34 backbone to detect workers and materials during rebar assembly. The system enables
automated productivity estimation without disturbing site construction activities. The approach achieves
high detection accuracy and shows good consistency with actual site observations.

(Luo, X. et al., 2018) present a method of activity recognition applied to surveillance video footage to
generate various and continuous activity labels for each worker appearing in the camera view. The
approach uses convolutional neural networks to detect activities from spatial and temporal data flows.
A new fusion strategy is proposed to combine the results from both streams. Experimental results show
that this method reaches an average accuracy of 80.5%, which is comparable to other activity recognition
methods in the field of computer vision, despite challenges caused by significant camera motion, low
video resolution, small differences between activity classes, and high variability within the same class.
Additionally, the paper demonstrates that this method can support the implementation of efficient and
objective work sampling.

Quality control also includes construction progress and quality assessment for specific elements.
(Trzeciakiewicz et al., 2025), using image-based automation through on-site camera systems, enabled a
drywall analysis. A deep learning-based segmentation model was applied: a modified Mask R-CNN
architecture with a ConvNeXt V2 backbone for better feature extraction, additional anchor ratios for
narrow objects like metal frames, and deconvolution layers for higher-resolution masks (56x56). The
system enabled the detection and classification of various drywall elements, with an analysis module to
cluster individual wall segments, estimate camera perspective distortions, and apply corrections.
Through this system, it was possible to extract information from images for more accurate progress
tracking and quality assessment on construction sites. However, qualitative evaluation relied on visual
inspection of segmentation, clustering, and perspective correction on both dataset images and new
construction site video frames. The study additionally faced the challenge of a limited dataset size (176
annotated images), which increased the risk of overfitting and poor generalisation.

Construction automation can also rely on computer vision and deep learning for autonomous pick-and-

place operations and robotic wall construction. For instance, (Vohra et al., 2021) developed a real-time
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visual perception framework for automating brick wall construction using a robotic system. It detects,
localises, and estimates the pose of bricks in cluttered environments for autonomous pick-and-place
operations through Rotating Box CNN combined with a lightweight 6D pose estimation method based
on point cloud analysis and RANSAC. This enabled end-to-end robotic wall construction without

manual intervention, focusing on efficiency and precision under limited computational resources.

Table 6 — Case studies for Real-Time Monitoring & Embedded Systems

Technology Digital . Application in
Reference Al implemented
Group Technology tool QA/QC
(Ekanayake, Track drywall /
2024) - Indoor Mask R-CNN Mask R-CNN  separation
progress installation
Li 2021 - Rebar
Measure worker
assembly CenterNet (DLA-34) CenterNet .
- productivity
productivity
Real-Time
o (Luo, 2018) — .
Monitoring T Two-stream Monitor worker
Worker activity - o
& " CNN activities
Embedded recognition
Systems Trzeciakiewicz _
Modified Mask R-CNN + Track drywall
2025 - Drywall Mask R-CNN | )
) ConvNeXt V2 installation
analysis
Vohra 2021 - ) . .
. Rotating Box CNN + 6D CNN + point  Automate brick
Robotic wall T
) pose estimation cloud placement
construction

Despite the notable progress that QA/QC in construction has witnessed, challenges persist in managing
quality amid the increasing demand for large-scale projects. Al, now implemented in various fields, is
envisaged for autonomous inspections that can improve inspection accuracy, streamline workflows, and
reduce labour and time costs.

However, common challenges that limit the effectiveness of Al-based QA/QC in construction are
evident in the reviewed case studies on advanced inspection and tracking systems. These include the
complexity of certain processes (such as scour prediction), the limitations of traditional models, and the
need for flexible, accurate systems capable of operating across diverse conditions. Issues related to small
datasets are observed in UAV-based inspections, along with false detections caused by reflections or

irrelevant objects, and the requirement for continuous data enrichment to improve generalisation. Indoor
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progress monitoring also faces challenges due to poor lighting, occlusions, and difficulties in
generalising models. Worker activity recognition is affected by camera instability, low-resolution
footage, and the similarity between different actions. Some studies highlight overfitting risks in drywall
analysis due to a limited number of annotated images, while others point out the need for greater
computational resources in real-time robotic wall construction.

These challenges highlight the need for better segmentation techniques, data augmentation, and
improved model design to increase the accuracy and reliability of Al applications in QA/QC.
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3. METHODOLOGY:

This chapter will address two components of the case study. The first concerns the future choice of the
Al model and therefore will introduce the concepts related to Al. The second will focus on the
preparation of the dataset, beginning with its origin in a computer vision platform and followed by data
processing. This part will describe the techniques applied to improve both the visual quality of the
images and the model’s ability to detect relevant features.

3.1. Overview of AI, ML, and DL:

Human approaches or conventional IT programs do not demonstrate realistic efficiency or accuracy in
analysing large amounts of data or in pattern recognition. Al, in contrast, offers the capacity to process
massive datasets and recognise patterns through large-scale statistical model building. Al has been
implemented since the 1940s; however, it is generally defined as the science that develops intelligent
machines or computer programs capable of mimicking human intelligence (Baduge, S.K. et al., 2022).

In recent years, Al has made remarkable progress in several domains such as computer vision, robotics,
autonomous vehicles, language translation, gaming, medical diagnosis, speech recognition, and
generative design. This progress has largely been achieved thanks to two main technologies: machine
learning (ML) and deep learning (DL). ML, a subfield of Al, is used to make predictions and learn useful
patterns or representations from datasets. DL, a subfield of ML, can be defined as a learning technique
that uses multiple layers of simple and adaptable computing units, commonly known as neural networks.

With the enhancement of computing power, Convolutional Neural Networks (CNNs)—widely used in
deep learning—have become one of the most applied techniques in visual object recognition, speech

recognition, image and speech synthesis, and machine translation.

Figure 6 illustrates the fields of AI, ML, and DL, as well as widely used algorithms such as MLP (Multi-
Layer Perceptron), GAN (Generative Adversarial Network), CNN, RNN (Recurrent Neural Network),
LSTM (Long Short-Term Memory Network), and RBFN (Radial Basis Function Network) (Baduge,
S.K. etal., 2022).
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Figure 6 — Domains of AI, ML, DL and widely used algorithms. (Baduge, S.K. et al.,2022)
3.1.1. Neural networks:

Inspired by the structure and function of the human brain, Artificial Neural Networks (ANNs) are a class
of machine learning models that have emerged as a family of computational methods. Unlike traditional
statistical approaches, ANNs are distinguished by their ability to model complex, non-linear
relationships between inputs and outputs. Conceptually, an ANN can be viewed as a black box with
multiple inputs and outputs, where information is learned rather than explicitly programmed.
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Figure 7 — Neural network as a black box illustrating the non-linear relationship between
multivariate input variables and multivariate responses (Zupan, 1994)

The artificial neuron, the basic element of an ANN, is designed to mimic the behaviour of biological
neurons. To produce an output, each neuron receives multiple inputs, applies weights, sums them, and
passes the result through an activation (transfer) function. In this analogy, the weights correspond to
synaptic strengths in biological neurons and represent the knowledge that the network acquires during
training.
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Figure 8 — Comparison between the biological and artificial neuron. The circle mimicking the
neuron’s cell body represents simple mathematical procedure that makes one output signal yj
from the set input signals represented by the multi-variate vector X. (Zupan, 1994)

Nevertheless, the weighted sum of inputs is not the sole determinant of a neuron’s output; the activation
function also plays a crucial role. Through this non-linear transformation, networks gain the flexibility
to capture complex patterns. Common types of activation functions include:

- Threshold function — binary output (0 or 1).
- Sigmoid function — smooth, continuous output between 0 and 1.
- Radial function — localized activation around a central value.

Y= f(Net ), y = f(Net), y; = f(Net ),
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Figure 9 — Common Activation (Transfer) Functions (examples include threshold, sigmoid, and
radial functions). (Zupan, 1994)

ANNS are structured in layers:

- Input layer — receives the raw variables.
- Hidden layers — intermediate processing units that capture patterns.
- Output layer — generates predictions or classifications.

Building on this layered structure, multiple hidden layers can be stacked to model increasingly abstract
features, forming the foundation of deep learning architectures.
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Figure 10 — ANN Architectures: Single-Layer vs. Multi-Layer Networks
(contrasts shallow and deeper ANN structures). (Zupan, 1994)

The ability to learn from data by adjusting weights highlights the power of ANNs. According to (Zupan,
1994), there are three major learning paradigms:

- Supervised Learning — Error Backpropagation:

In supervised learning, an ANN is trained with labelled input—output pairs, and error backpropagation
is one of the most widely used methods. The term derives from the learning procedure, where the error
between predicted and target outputs is propagated backwards to update the weights. The weights of
neurons are first corrected in the output layer, then in the second hidden layer, and finally in the first
hidden layer.
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Figure 11 — Order of weight correction in backpropagation. (Zupan, 1994)

- Unsupervised Learning — Kohonen Self-Organizing Maps:

Unsupervised learning does not require labelled outputs, unlike supervised methods, as it discovers the
internal structure of the data during the learning process. One well-known example is the Kohonen Self-
Organizing Map (SOM). Although less common in modern deep learning, this method represents an
important foundation for clustering and visualisation tasks, as it projects high-dimensional data onto a
two-dimensional grid while preserving topological relationships.

- Hybrid Models — Counter-Propagation Networks:

Counter-propagation networks are considered a hybrid method, as they combine Kohonen maps with
supervised output layers, bridging unsupervised feature mapping with predictive modelling.

Since their discovery, ANNs have formed the foundation of modern deep learning thanks to their non-
linear structure. Despite limitations such as computationally intensive training and the risk of overfitting
when data is insufficient, it remains essential to understand these classical principles before exploring
more advanced architectures. The following section will explain Convolutional Neural Networks
(CNNs) as an extension of this paradigm, exploiting spatial hierarchies that make them highly effective
for image analysis. Subsequently, Siamese networks will be introduced as an adaptation of ANNSs in
general, and CNNss in particular, designed for computer vision tasks.
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3.1.2. Convolutional neural network:

A Convolutional Neural Network (CNN) is a specialised type of Artificial Neural Network (ANN)
designed to process grid-structured data, such as images composed of pixels. CNNs are widely used in
image classification and computer vision. They typically include three types of layers: the convolutional
layer, the pooling layer, and the fully connected (FC) layer. In conventional CNNs, convolutional layers
are followed by pooling layers (or additional convolutional layers such as the ReLU layer), with the FC
layer placed at the end, as illustrated in Figure 13.

The input layer contains the raw image data. The core building block of the CNN is the convolutional
layer, which uses filters—called kernels or feature detectors—to extract features. A filter is a 2D array
of weights smaller than the image size. By sliding the filter across the image, a dot product is calculated
between pixel values and filter weights, producing an output array. This process, known as convolution,

generates a feature map (also called an activation map or convolved feature).

To significantly reduce memory and computation requirements for large inputs such as images, videos,
and audio, CNNs restrict connections to local receptive fields (Figure 13), unlike traditional neural
networks (NNs), where all neurons in one layer connect to all neurons in the next (Figure 12). An
activation function is then applied after convolution, and the depth of the feature map depends on the

number of filters used.
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Figure 12 — Schematic of a feedforward neural network and a single neuron. (Baduge, S.K. et
al.,2022)

The pooling layer is a downsampling operation that reduces the dimensionality of the image by taking
either the maximum or the average value within a defined region, thereby retaining important features
while reducing computational complexity. The fully connected layer, positioned at the end of the
network as shown in Figure 13, contains neurons that are fully connected to the activations of the
previous layer in order to perform the classification or final task.

European Master in Building Information Modelling BIM A+ 25



Al for QA/QC in construction. A Siamese Network with Triplet Loss

- Healthy
= Alarm
= Danger
O [J - Damaged
FULLY
INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU  POOLING FLATIEN A SOFTMAX
. Y Y.
Aircraft Structural Condition

Feature Learning

Sensing Input Classification

Figure 13 — Typical architecture of CNN. (Baduge, S.K. ef al.,2022)

The hyperparameters of CNNs that define the architecture of DL algorithms are the filter size, number
of filters, padding, and strides. A cost function is used to train the model, and through backpropagation
the filter weights are updated. Different CNN types have been developed by various researchers,
including the well-known AlexNet, VGGNet, and ResNet.

3.1.3. Siamese adaptation:

The term Siamese refers to the design of a model with two identical subnetworks. A basic Siamese
network is composed of two subnetworks—commonly CNNs in computer vision. However, the
architecture has since evolved, and it can now consist of two or more identical subnetworks with shared
weights. Figure 14 illustrates the typical network structure of a Siamese network. It is designed to learn
a similarity function between pairs of inputs. Each branch transforms its input into a feature
representation, and the similarity between them is measured using a metric such as Euclidean distance
or cross-correlation. The resulting feature embeddings are compared at the final stage to produce a
prediction.

The Siamese network was first proposed in 1993 by Bromley et al. for signature verification. Since then,
various novel designs of Siamese networks have been introduced. However, significant progress has
only been achieved in recent years due to the relatively high computational requirements of deep
learning—based structures. Consequently, further research on Siamese networks has been enabled by
improvements in computational hardware capability (Li et al., 2022).
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Figure 14 — Typical network structure of Siamese network (Li, Y., Chen, C.L.P., 2022).

Siamese networks are suitable for several purposes, including object tracking, image matching, re-
identification, change detection, and product recommendations. Building on this idea, a Siamese
network learns by comparing input instances. This architecture has the potential to explore the feature
space and obtain discriminative features for downstream tasks. In classification and regression tasks,
Siamese networks are widely used to learn effective feature representations for decision-making (Li et
al., 2022).

For image matching, (Melekhov et al., 2016) define it as a structure consisting of two identical branches
that share weights and parameters (Figure 16). The main goal is to learn optimal feature representations
of input pairs, where matched images are pulled closer together and unmatched images are pushed
farther apart.

Figure 15 — Picked positive and negative image pairs of evaluation datasets. (Melekhov et al.
2016)
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The images in Figure 15 are partially occluded and captured under varying lighting and weather
conditions, with differences in viewpoint and appearance. These factors make the generic
image-matching task more challenging.

I fZ;)
Image 1 > branch 1 (CNN) >
shared weights II__::;
I, f(Z,)
Image 2 > branch 2 (CNN) >
'y

- |
Figure 16 — Model structure. Proposed network architecture (sHybridNet) for image matching.
Branches 1 and 2 have the same HybridCNN structure. (Melekhov et al. ,2016)

On the other hand, (He et al., 2018) emphasise the conceptual role of Siamese networks in real-time
tracking, noting that these architectures learn a general similarity function between the target patch (the
object to be tracked) and candidate patches (possible object locations in the next frame). This makes
them attractive for tracking due to their speed and robustness. Figure 17 shows that the target object is
consistently followed by the proposed tracker, even under variations in shooting angle and scale, where
SiamFC fails (adapted from He et al., 2018).

#0007

Ground Truth SiamFC ours

Figure 17 — Comparison of tracking results between Ground Truth, SiamFC, and the proposed
tracker. (He et al., 2018)
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Figure 18 — Architecture of the proposed twofold SA-Siam network (He et al., 2018).

The model combines an appearance network (A-Net) and a semantic network (S-Net), as shown in
Figure 18. Features are extracted separately and fused during testing, allowing the tracker to integrate
both semantic and appearance information for improved object tracking.

Finally, (Zhang et al., 2017) adapted this function for structured object tracking. Trackers based on
Siamese networks select the target from candidate patches using a matching function learned offline on
image pairs. This matching function is typically implemented by two-branch CNNs with tied
parameters, which take the image pairs as input and predict their similarity.
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Figure 19 —The pipeline of the StructSiam algorithm. (Zhang et al., 2017)

Figure 19 illustrates that, compared with existing trackers, the results of the StructSiam network
demonstrate its ability to handle scale variation, occlusion, and appearance changes. The qualitative
evaluation shows that StructSiam produces more focused and stable target localisation, while bounding
box comparisons highlight its robustness across challenging video sequences (Zhang et al., 2017).
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Figure 20 — Qualitative evaluation of the StructSiam algorithm compared with other state-of-
the-art real-time trackers. (Zhang et al., 2017)

Figure 20 shows response maps on different frames (top), illustrating target localisation performance;
response maps of the global model (right); and bounding box comparisons across seven benchmark
sequences (bottom).

- Triplet Network:

Beyond the conventional Siamese network, which uses identical branches with shared weights to
process two inputs, the triplet network represents a more powerful extension designed for metric
learning. It belongs to the Siamese family but extends the idea to three inputs: an anchor, a positive, and
a negative. (Hoffer and Ailon, 2015) proposed the triplet network for deep metric learning, where x: is
the anchor input, x> is a positive sample, and x; is a negative sample (Figure 21). In similarity
comparison, x; and x> are from the same category, while x; belongs to a different category. By using
both positive and negative pairs simultaneously during training, the triplet network is able to learn more
discriminative features.

The triplet network has been applied in image classification, retrieval, re-identification, and other metric
learning tasks. Recent studies also suggest its potential for unsupervised extensions, such as temporal or
spatial proximity.
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Figure 21 — Triplet network structure of three branches (anchor, positive, negative) feeding into

distance comparisons, Hoffer and Ailon (2015)

Table 7 — Classification accuracy comparison. (Hoffer and Ailon, 2015)

Dataset TripletNet SiameseNet  Best Known Result (with No Data
augmentation)

Mnist 99.54+0.08% 97.9+0.1% 99.61% Mairal et al. (2014); Lee et al. (2014)

Cifar10 87.1% - 90.22% Lee et al. (2014)

SVHN 95.37% - 98.18% Lee et al. (2014)

Mnist 99.54+0.08% 97.9+0.1% 99.61% Mairal et al. (2014); Lee et al. (2014)

STL10 70.67% - 67.9% Lin & Kung (2014)

Table 7 demonstrates that the Triplet Network achieves high classification accuracy across multiple

datasets, in some cases outperforming or matching the best-known results without data augmentation.
However, it reports Siamese network results only on MNIST. According to (Hoffer and Ailon, 2015),

attempts to train Siamese networks on the other datasets did not yield meaningful results, suggesting

that the context-dependence of the similarity measure in Siamese networks made training unstable.
These findings highlight the robustness of Triplet embeddings in comparison with Siamese networks,
which will represent the core of the AI model to be developed in the case study.
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3.2. Digital tool implementation, OpenSpace Al for Reality Capture in Construction
3.2.1. Description of the platform:

OpenSpace Al is an integrated platform that enables comprehensive site capture from every angle,
creating a shared visual record from pre-construction through operation. It leverages imagery collected
from drones, 360° cameras, mobile devices, and laser scanners. The platform automatically pins images
to floor plans, aligns real-world conditions with BIM models, and organizes data by sheets and zones,
thereby transforming raw imagery into actionable insights for project progress tracking. Its visual
documentation features allow users to flag changes, monitor QA/QC through field notes, and facilitate
seamless communication between on-site teams and office-based professionals.

A 20n + | @D B G B el st -

Figure 22 — Example of 360° Reality Capture and Walk Path Using OpenSpace Al
(openspace.ai)

T

Figure 23 — Visual Progress Monitoring with Color-Coded Status per Unit (openspace.ai)
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Figure 24 — Example of Field Notes and Issue Management Interface (openspace.ai)

3.2.1. Implemented Technologies in OpenSpace Al

This tool relies on computer vision to automatically align images into an integrated scene, identify and
label key features, and map them onto floor plans, thereby providing a visual understanding of the
captured environment. It also offers the capability to convert 360° videos into a 3D map by generating
a point cloud. This process is achieved by detecting common points between images and estimating the
corresponding camera positions during capture.

The platform leverages machine learning to enhance the performance of its Al engine. With each
additional site walk, the model learns from the captured data, enabling faster and more accurate image
alignment and mapping. Moreover, OpenSpace integrates image-based Simultaneous Localization and
Mapping (SLAM)—a technique widely used in robotics, drones, and autonomous vehicles—to estimate
the walker’s path on a floor plan while simultaneously reconstructing the surrounding environment.

In addition, the system incorporates large language models (LLMs) to interpret and extract insights from
reality-capture data, thereby improving automation and decision-making capabilities. Overall, the
platform creates a comprehensive visual record and serves as a centralized source of information,
allowing field teams to easily view and navigate BIM models on-site. It also provides advanced features
such as BIM Compare for visual comparisons, Split View for tracking changes over time, and the ability
to transform captured data into actionable insights.

3.2.2. Key Functionalities and Benefits of OpenSpace Al in Construction Projects

This platform provides a wide range of functionalities for different stakeholders in construction
projects—including contractors, trades, and project owners—with the aim of improving coordination,
documentation, and project oversight throughout the construction lifecycle.

First, it enables remote progress tracking by providing images that clearly document what has been
completed and when. This supports the evaluation of material quantities, percentage of completion, and
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overall productivity. It also facilitates the annotation of hazards through Field Notes, the generation of
detailed reports, and the seamless sharing of information across teams.

Second, the platform enhances (QA/QC) by visually identifying discrepancies before they escalate into
significant issues, using tools such as BIM Compare. It also supports project management by enabling
professionals to plan construction activities, monitor progress remotely across multiple projects, and
reduce the need for frequent site visits, thereby helping mitigate labor shortage risks.

Finally, the platform simplifies project coordination by keeping all captures, conversations, and project
activities neatly organized, easily accessible, and securely stored on dedicated servers. It contributes to
significant cost savings by reducing travel expenses by nearly 50%, minimizing rework through
improved accuracy, and lowering insurance premiums by up to 25%. These benefits are largely achieved
through its ability to ensure visual transparency, consistent progress tracking, and reliable
documentation throughout the project lifecycle.
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Figure 25 — Side-by-Side Comparison of Site Reality Capture and BIM Model in OpenSpace
(openspace.ai)

This platform adds significant value to the digitalization of the construction field by integrating cutting-
edge Al technologies that enhance project management, including site coordination, progress tracking,
quality assurance and quality control (QA/QC), safety monitoring, and cost reduction. However, the tool
primarily relies on visual inspection to enable functionalities such as progress monitoring and QA/QC
verification. In this research, the aim is to explore approaches for automating QA/QC-related tasks in
order to improve efficiency and accuracy.

Through its BIM Compare feature, the platform enabled the collection of a dataset composed of site
images and their corresponding BIM model images. Based on this dataset, and by leveraging an Al-
powered Siamese network, a model will be developed to automate the comparison process, thereby
reducing dependency on manual visual inspection and improving the overall reliability of quality

assessment.
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3.3. Methodology of building the dataset

To build a consistent and informative dataset for training the Siamese model (Triplet Network), the
construction site was explored through a 360-degree virtual walk using the OpenSpace Al software.
Walls were chosen as the primary focus for dataset creation, as they were considered simpler objects for
testing the network in its initial phase. During the image selection process, several criteria were applied
to enhance both the visual quality of the images and the model’s ability to detect relevant features.

- Framing: Images were cropped to retain the most relevant part of the wall, ensuring that
architectural and MEP elements—such as windows, doors, or pipes—were visible. This allowed
the model to recognize and differentiate between various features.

- Angle and Perspective: A consistent perspective was maintained to reduce variation and
minimize noise in the dataset. Image extraction was therefore based on a single, fixed viewpoint

for both site images and model images, ensuring comparability.

- Lighting Control: Lighting conditions were carefully considered. Images with natural or site
lighting that provided clear visibility were prioritized, while strong shadows and overexposed
areas were avoided to preserve detail and improve feature recognition.

- Focus and Sharpness: To facilitate accurate detection, only images of fully completed walls
were selected, while those under construction were excluded. This improved the model’s ability
to capture edges, textures, and feature boundaries.

The image collection process was time-consuming, primarily due to occlusion issues, where objects in
the foreground blocked relevant background features. On construction sites, occlusion was frequently
caused by workers, scaffolding, materials, equipment, or temporary lighting. In such cases, image
capture had to be delayed or adjusted until the obstruction was removed.

Another challenge arose in very narrow spaces, where it was not always possible to capture images with
appropriate framing or perspective. Furthermore, the dataset was constrained by the 360-degree virtual
walk, which did not always cover all the required areas of the site.

For optimal results, it was essential to anticipate how the model would process the dataset, particularly
when comparing site images to model images. In this sense, a visually consistent dataset required the
establishment of clear and coherent selection criteria to ensure quality and comparability.
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4. CASE STUDIES:

4.1. Building presentation:

In compliance with the Non-Disclosure Agreement (NDA), the description of this project includes only
general information, without disclosing specific names, locations, or areas. The project concerns a data
center in Europe with a capacity of 12 MW, organized into several functional zones with clearly defined
circulation routes.

Figure 26 —BIM 3D Model Global View of the Facility

Figure 27 — BIM 3D Model Perspective of Technical and Equipment Areas
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The ground floor comprises large plant rooms and areas reserved for future expansion, as well as smaller
office and service blocks. Circulation is structured into main routes, secondary access paths, and

technical or restricted service zones.

Figure 28 — Ground Floor Plan

The first floor is designed to accommodate administrative and staff functions. It includes office spaces,
meeting rooms, a cafeteria, and staff facilities such as restrooms and locker rooms. Circulation is
organized horizontally to ensure smooth internal movement between areas, while vertical circulation
provides direct links to the ground floor. Both levels are connected through central circulation routes,

including stairs, elevators, and corridors.

Figure 29 — First Floor Plan
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The roof level is dedicated to mechanical and electrical equipment. It includes equipment rooms and
technical service areas, with restricted access routes designated for inspection and maintenance
activities. This organization ensures functionality and safety while preventing interference with public
or administrative functions

Figure 30 — Roof Level Plan

Overall, the building represents a complex, service-intensive facility, where the coexistence of
architectural, structural, and MEP systems creates a challenging yet highly representative environment
for dataset collection. It is an under-construction project designed with both architectural spaces and
extensive technical installations. Architectural features include glazed openings and doorways, which
are recurrent along the walls. Some areas are wide and open, allowing for straightforward frontal
viewpoints, while others are narrow corridors or service zones, resulting in restricted perspectives and
a higher risk of occlusion. The building also incorporates a dense network of MEP systems—such as
fire protection pipes, ventilation ducts, insulated pipes, cable trays, and radiators—distributed along
walls, ceilings, and corridors.
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4.2. Process of building the dataset:

Taking into consideration the criteria outlined in the methodology chapter for constructing the dataset,
pairs of site images and their corresponding BIM model views were selected according to several factors,
including angle and perspective, lighting control, and balanced image composition. The predefined
camera positions provided by the 360° virtual walk software were used to ensure alignment and
comparability through a fixed viewpoint. These characteristics also align with the requirements for
building a dataset intended for training an Al model, where architectures such as ResNet or CNN require
fixed-size inputs. In addition, walls with varying levels of feature complexity were chosen as the primary
focus of this dataset.

The dataset can therefore be classified according to the complexity of wall features, ranging from low-
noise baseline cases to high-complexity environments. This classification aims to cover a wide range of
construction scenarios and to test the Siamese model’s ability to compare site images with BIM model
images. The following sections present examples of dataset pairs categorized according to the
complexity of features in each group

4.2.1. Simpler Walls with Minimal Features:

At the first level, the image pairs contain simpler features, with only a few elements, such as a radiator
and a vertical pipe (Figure 31). The viewpoint is primarily frontal, which ensures better comparability
between the site and model images. In some cases, imperfections are visible in the site images due to
unfinished elements, such as loose cables (Figure 32). Despite these imperfections, the use of a frontal
viewpoint and the limited number of elements result in dataset pairs with reduced noise.

sty m———— e

Figure 31 — Site/BIM pair showing a simple wall with radiator and pipe

Figure 32 — Site/BIM pair of a simple wall with a door opening
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4.2.2. Architectural Walls with Key Features:

The selected pairs aim to provide sufficient relevant features for comparison while avoiding
overcrowding, thereby reducing potential noise. The images were captured at human-eye level, with
either a frontal or slightly angled perspective of the wall, for both the site image and the BIM model
(Figure 33). The walls include key architectural and MEP features, such as a door, radiator, window
opening, and visible cables (Figure 34).
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Figure 33 — Site/BIM pair of an architectural wall with door, window, radiator, and pipes

Figure 34 — Site/BIM pair of an architectural wall with radiator, pipes, and large glazed
openings

Figure 35 — Site/BIM pair of an architectural wall with a narrow vertical glazed opening
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4.2.3. Complex Walls with Dense MEP Systems

Some examples were selected for their higher complexity compared to simpler architectural walls. One
pair of images (Figure 36), for instance, shows a larger number of MEP elements, such as fire protection
pipes. The viewpoint remains frontal or slightly angled, allowing proper alignment between the site
photo and the BIM model. This pair is particularly rich in elements, including pipes, valves, fixtures,
and their associated materials and colors. Although such complexity increases the risk of dataset noise,
these examples were intentionally included because they provide valuable training material to evaluate
how effectively the model can learn to detect and differentiate overlapping and occluded systems.

Figure 36 — Site/BIM pair of walls with dense MEP systems (fire protection pipes and valves)

There are also attempts to integrate ceiling-level MEP elements without altering the primary reference
of the dataset, which remains focused on walls. While the viewpoint is still frontal (Figure 37), it extends
upward to include components such as ducts and pipes. By incorporating these perspectives, the dataset
is enriched and the model’s capacity is expanded to learn more about MEP elements. Although these
components belong to ceiling zones, they remain visually and functionally integrated with the walls.

Figure 37 — Site/BIM pair of a wall integrating ceiling-level MEP elements (ducts and pipes)
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4.2.4. Structural-Focused Walls

Some image pairs are more structurally focused compared to architectural walls, simple walls, or MEP-
dense walls. As in most cases, the viewpoint is frontal or slightly angled. These pairs (Figures 38 and
39) emphasize steel structural elements such as vertical columns, diagonal bracing, and overhead ducts.
While the site images display real textures and materials, the BIM models represent them with clean
surfaces and colored geometries. Although these examples are less cluttered than MEP-heavy pairs, they

still provide important structural information that enriches the dataset.

Figure 38 — Site/BIM pair of a wall with exposed structural elements (steel columns, diagonal
bracing, and overhead ducts)

Figure 39 — Site/BIM pair of a wall with exposed structural frame (steel columns and diagonal
bracing)
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4.2.5. Special Viewpoints and Spatial Constraints

Unlike the frontal viewpoints of previous examples, this pair adopts a central “direction of view”
perspective. The images (Figures 40 and 41) combine architectural constraints—such as the corridor’s
narrowness and door opening—with technical systems including vertical supports and suspended trays
or cable racks.

As in previous cases, the site image appears more cluttered, whereas the BIM model simplifies these
elements and provides greater clarity in the spatial arrangement. Such pairs with alternative viewpoints
are an important addition to the dataset, as they test the model’s ability to handle restricted perspectives
and denser vertical elements, despite the increased risk of occlusion.

Figure 40 — Site/BIM pair of a narrow corridor with vertical supports, suspended trays, and
doorway

Figure 41 — Site/BIM pair of a wall with constrained spatial perspective with structural and
MEP integration
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4.3. Siamese model workflow:

This Siamese model is designed to learn visual similarity by training on triplets of images: an anchor
(the site image), a positive (the corresponding BIM model image), and a negative (generated by shuffling
site and BIM model images).

The workflow begins with setting up the necessary libraries and preparing the dataset. Images are resized
to 200 x 200 pixels and transformed into tensors to make them readable by machine-learning algorithms.
The model then ensures the correct pairing of anchor, positive, and negative images, and visualises
sample triplets.

Using a CNN-based embedding model, each image is converted into a vector representation, enabling
the Siamese network to measure similarity. The differences between embeddings are computed and used
to train the model. Training relies on a triplet loss function that encourages the network to bring similar
images closer together while pushing dissimilar ones further apart.

The training process uses batching (processing subsets of images) and epochs (full passes over the
dataset). Both training and validation loss are monitored to evaluate learning performance and detect
possible overfitting. The following section will explain the detailed structure step by step and will be
summarised in Figure 47.

4.3.1. Setup:

As a first step, the environment was set up by importing the required libraries and defining the target
image size. This step is essential for convolutional models, which require uniform input dimensions.
Libraries such as matplotlib.pyplot were imported for plotting images and graphs and used here to
display image samples. NumPy handled numerical operations and array manipulation, while os and
random supported file and data management. The deep learning framework TensorFlow was
implemented as the main library to build and train the model. Path from pathlib ensured clear and
consistent file path handling. Several Keras modules were also imported: applications for pre-trained
models and architectures, layers for building network components (e.g., Conv2D, Dense), losses for
built-in loss functions, ops for backend tensor operations, optimizers (e.g., Adam, SGD) for updating
model weights, metrics for performance tracking, Model as the base class for creating custom models,
and resnet for implementing the ResNet architecture from Keras Applications. Finally, a fixed input size
of 200 x 200 pixels was defined, to which all images were resized.

4.3.2. Load Data set:

Loading the dataset consists of mounting Google Drive and downloading ZIP files using gdown, a
command-line tool suitable for the Colab environment. The dataset files include left.zip for anchor
images and right.zip for positive images. To allow direct access to these files (images in this case), the
process begins by importing the necessary module to interact with Google Drive and mounting it at the
appropriate path (/content/drive), with Path from pathlib ensuring clean path handling. This process
results in organized image pairs ready for model training.
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4.3.3. Preparing the Data:

This part of the model defines the preprocessing pipeline for images used in the Siamese network.
Through a sequence of functions, the model:

preprocess_image function: Reads an image file, decodes it, normalizes the pixel values, and resizes it
to 200x200 pixels.

preprocess_triplets function : Ensures that all inputs are in a consistent format before being passed to
the model. An image tensor represents image data (pixels) as numbers that a machine learning model
can process. This function takes the file paths of an anchor, a positive, and a negative image, and returns
their corresponding preprocessed image tensors.

Dataset preparation : The model loads and sorts anchor and positive image paths to ensure correct pairing
(anchors and corresponding positive images are stored in Drive folders with the same names). It then
shuffles and combines these lists to create negative samples.

Visualization step : As a final part of data preparation, a function displays three triplets in a 3%3 grid,
each consisting of an anchor image, a similar (positive) image, and a different (negative) image. This
allows verification that image pairs are correctly aligned and labeled before training the model (Figure
42).

Figure 42 — Example of displaying three triplets in a 3x3 grid: the anchor image on the left, a
similar (positive) image in the middle, and a different (negative) image on the right.
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4.3.4. Building the model:

The model converts each image into a vector representation for similarity comparison within the
Siamese network. A pre-trained ResNet50, already trained on a large dataset, is used to extract useful
features from the images. The embedding model incorporates custom dense layers that generate a 256-
dimensional embedding vector. To improve training efficiency and reduce the risk of overfitting, only
the deeper layers of ResNet (starting from convS _blockl ouf) are made trainable, while the earlier layers
remain frozen. This setup transforms images into a numerical form for similarity checking, optimising
both training speed and accuracy.

The Siamese model is implemented as a custom Keras model that manages both training and evaluation
using triplet loss. It is built by defining three input images—anchor, positive, and negative—and passing
them through the shared embedding model. A custom DistanceLayer then calculates the squared
distances between the anchor—positive and anchor—negative embeddings. By applying a margin-based
triplet loss, the model ensures that similar images are positioned closer together in the embedding space
than dissimilar ones. Custom training and testing steps are also included to manually compute gradients
and update the model’s weights during training.

L(A, P, N) = max(If(A) - f(P)I? - If(A) - f(N)I* + margin, 0)'

Distance Layer (Triplet Loss)

Shared Embedding Generator
(ResNet50 + Dense)

Anchor (A) Positive (P) Negative (N)

Figure 43 —Architecture of the Siamese Network with Triplet Loss

! (Schroff, F et al, 2015)
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4.3.5. Training the model:

Using the prepared triplet dataset, the model is trained for 10 epochs. Validation data is used to monitor

performance and mitigate the risk of overfitting. To verify that the data is correctly structured, the model

also visualises anchor, positive, and negative images by retrieving a sample batch of triplets from the

training set. This visualisation step is essential before relying on the training results, as it confirms that

the images are properly aligned and accurately labelled.

©

()

Figure 44— Example of Training and validation loss outputs of the model

Figure 45 — Sample batch of triplets from the training
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4.3.6. Triplet Loss and Accuracy: Evaluating Similarity in Siamese Networks

After training, model performance is evaluated using a metric called triplet accuracy, which

reflects how often this condition is satisfied:
Accuracy = Total number of predictions / Number of correct predictions

In this context, a prediction is considered correct if the model ranks the positive image as more
similar to the anchor than the negative image, according to the distances between their
embeddings. This aligns with the standard definition of accuracy used in classification tasks,
but here it is applied to similarity ranking rather than label prediction.

By computing both the loss during training and the accuracy on validation data, we can observe
how well the model generalizes to unseen image pairs. This dual evaluation — using distance-
based loss and ranking-based accuracy — provides a complete picture of the Siamese model's
ability to distinguish visual similarity.

[ 1 train_acc = compute_triplet_accuracy(train_dataset)
val acc = compute_triplet accuracy(val dataset)

print{"Train accuracy:™, train_acc)
print("Validation accuracy:"™, wval acc)

(4]

Train accuracy: 2.97530864193753836
Validation accuracy: 0.9

Figure 46—Accuracy outputs of the model
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4.4. Results of Siamese algorithm:

The model is first trained on a dataset of 50 triplets of images, consisting of 50 anchors (site
images), 50 positive images (BIM model), and 50 shuffled anchor images used as negatives.
Training is performed for 10 epochs, during which both training loss and validation loss are
recorded. A sample batch of triplets from the training set is also retrieved for visualisation to
confirm correct alignment and labelling.

Both training and validation loss are monitored to evaluate learning performance and to detect
possible overfitting. Following this procedure, the model is trained a second time after
increasing the dataset to 100 triplets.

This section presents and discusses the results of training and validation loss for both runs
(before and after increasing the dataset), followed by an analysis of the accuracy results
obtained.

4.4.1. Training and validation loss of the model

Dataset of 50 triplets of images:

Table 8 — Training and validation loss of the model before increasing the dataset

Epoch Training loss Validation loss
Epoch 1/10 0.7447 0.4439
Epoch 2/10 0.8525 0.3218
Epoch 3/10 0.3256 0.358
Epoch 4/10 0.325 0.1825
Epoch 5/10 0.198 0.0418
Epoch 6/10 0.2494 0.2508
Epoch 7/10 0.1566 0.0523
Epoch 8/10 0.0849 0.0529
Epoch 9/10 0.0906 0.1311
Epoch 10/10 0.2446 0.0667
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Figure 48 — Graph of training loss and validation loss over the 10 Epochs (before increasing the
dataset)

- The training loss starts at approximately 0.75, peaks at epoch 2 with a value of ~0.85, and then
decreases sharply to ~0.3 by epoch 3. This early fluctuation suggests some instability in the

training process.

- After epoch 3, the training loss decreases smoothly, stabilising between 0.1-0.2, with a slight
increase observed at epoch 10.

- In contrast, the validation loss begins at ~0.45 and decreases steadily, approaching zero by
epoch 5. However, at epoch 6, a noticeable spike occurs, indicating fluctuations in validation
behaviour.

- This inconsistency in the validation curve suggests that the model has not yet achieved a stable
or fully generalisable representation.

- Since the training loss continues to decline while the validation loss occasionally spikes, there
remains a significant risk of overfitting.

Overall, the model demonstrates rapid learning but unstable validation performance, strongly suggesting
that the small dataset size is a limiting factor. To address this, the model was subsequently trained on an
expanded dataset of 100 triplets.
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Figure 49 — sample batch of triplets from the training set before increasing the dataset

Dataset of 100 triplets of images:

Table 9 — Training and validation loss of the model after increasing the dataset

Epoch Training loss Validation loss
Epoch 1/10 0.6853 0.4264
Epoch 2/10 0.4675 0.2609
Epoch 3/10 0.3274 0.1191
Epoch 4/10 0.1615 0.1135
Epoch 5/10 0.1293 0.1507
Epoch 6/10 0.1162 0.0517
Epoch 7/10 0.1308 0.1346
Epoch 8/10 0.1320 0.2421

52 European Master in Building Information Modelling BIM A+



Al for QA/QC in construction. A Siamese Network with Triplet Loss

Epoch 9/10 0.0309 0.0436
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Figure 50— Graph of training loss and validation loss over the 10 Epochs (after increasing the

dataset)

As a general observation of this graph, it is encouraging that both the training loss and validation loss

decrease sharply during the first few epochs, indicating that the model learns quickly at the start:

Between epoch 1 and epoch 4, both training and validation loss drop significantly, suggesting
that the model is rapidly learning to distinguish between image pairs.

Some instability is noticeable in the validation set after epoch 4, particularly with the spike at
epoch 8. Possible causes include the small size of the validation set, noisy data, or a slightly
high learning rate.

By epoch 10, both losses are again very low (training loss ~ 0.058, validation loss = 0.030),
indicating that the model has fit the data well without clear signs of overfitting.

Typically, overfitting occurs when training loss decreases while validation loss increases. In
this case, both losses follow the same trend, suggesting that the model is generalizable.

In summary, the model shows rapid convergence in the early epochs (1-4), a fluctuation in validation

loss at epoch 8, and low final loss values by epoch 10. These results indicate that the model is likely

generalisable, with no strong evidence of overfitting.
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Figure 51 — sample batch of triplets from the training set after increasing the dataset

4.4.2. Accuracy Evaluation:
Triplet accuracy measures how often the model makes a correct prediction of the following condition:
distance (anchor,positive) < distance (anchor, negative)

This means that triplet accuracy represents the percentage of cases where the model successfully learns
to bring similar images closer together and push different images farther apart.

The following section presents the triplet accuracy results and their interpretation.
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a. Dataset of 50 triplets of images:

Accuracy Evaluation

M Training Accuracy

1 Validation Accuracy

Chart 1
Category

Figure 52—Triplet Accuracy Evaluation

The observed results show a train accuracy of 1.0 (100%) but a validation accuracy of 0.8 (80%).
The value of training accuracy suggests that the model has essentially memorized the training triplets.
However, the gap with the validation accuracy indicates that the model learned the training examples
perfectly, but doesn’t generalize equally well to unseen validation triplets.
This gap might be a reason of the small dataset, which could lead to a small validation set that is not
fully representative.

As a conclusion, with this dataset, the training accuracy reached 100% which suggests that the model
memorized the small training dataset. However, the validation accuracy drops to 80%. This gap might
highlight overfitting and limited generalization capacity due to the small dataset size.
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b. Dataset of 100 triplets of images:
[ 1 train_acec = compute_triplet_accuracy(train_dataset)
val acc = compute_triplet accuracy(val dataset)

print{"Train accuracy:"™, train_acc)
print({"validation accuracy:™, wval_acc)

4

Train accuracy: ©.975308864197530836
Validation accuracy: 8.9

Figure 53— Model evaluation of Triplet Accuracy
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Figure 54-Triplet Accuracy Evaluation

Triplet accuracy measures how often the model correctly ranks the anchor—positive pair as closer than
the anchor—negative pair.
The results show:
- Training Accuracy = 97.5% On the training data meaning that 97.5% of triplets were ranked
correctly.
- Validation Accuracy = 90% On validation data (unseen during training) meaning that 90% of
triplets were ranked correctly.

These values indicate that the model has learned the similarity function effectively, achieving high
accuracy. The slight drop from training to validation accuracy is normal and even desirable, as it
suggests that the model generalizes reasonably well to new, unseen data.
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S. CONCLUSIONS

The aim of this work was to contribute to the digitalization of QA/QC in construction through the
implementation of an Al-driven solution. The study pursued three main objectives: first, to conduct a
literature review on the current state of digital technologies and Al applications in QA/QC; second, to
develop a methodology for applying Al to QA/QC, with particular focus on the triplet network within
the Siamese architecture; and third, to test this methodology in a case study by training the Siamese
model on a real dataset of as-built site imagery and as-designed BIM model imagery, followed by an
analysis of the results and an evaluation of its performance.

The literature review has described the limitations of traditional methods in QA/QC, explaining that
they are costly, time-consuming, and insufficient for modern complex projects. It then emphasised how
advanced digital technologies improve inspection accuracy and efficiency, while also outlining their
current limitations, suggesting that more precise practical applications of these technologies could make
QA/QC more data-driven and efficient.

This part of the research highlighted how Al-driven solutions, particularly deep learning, can add
automation, efficiency, and accuracy to QA/QC, especially in defect detection, safety monitoring, and
predictive quality control. It also underlined existing research gaps consisting of dataset limitations,
integration problems, false positives, computational constraints, and generalisation issues across studies.

Finally, this review enriched the discussion by presenting case studies of Al-driven technologies for
QA/QC, classifying them into technology groups such as Additive Manufacturing & Material
Assessment, Advanced Inspection & Tracking, Data Analytics & Communication Tools, Digital
Construction Platforms, and Real-Time Monitoring & Embedded Systems.

Following the literature review, this work developed a methodology aimed at implementing an Al-
driven solution for a quality control task, specifically comparing as-built with as-designed data. To
prepare for the application of the Al-driven solution, this chapter first introduced the concepts of Al,
beginning with a general description and then branching into Machine Learning (ML) and Deep
Learning (DL).

This explanation established the foundation for Artificial Neural Networks (ANNs) as the basis of
modern DL, before moving on to Convolutional Neural Networks (CNNs). The methodology then
detailed the Siamese network, which uses CNNs as subnetworks, and concluded with the triplet network,
a variant of the Siamese family that represents the core of the Al model developed in this study.

Additionally, the methodology introduced the digital tool implemented for this case study: a platform
that combines reality capture (360° imagery, drone data) with Al-driven spatial computing. The BIM
comparison feature of this tool enabled the preparation of a dataset. The methodology also described the
image selection process, focusing on walls, addressing challenges such as occlusions and perspective
limitations, and applying techniques such as lighting control and framing.
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The case study chapter presented the practical part of this work. It began by describing the large-scale
data center project, which included architectural, structural, and MEP systems—an environment that is
both complex and representative for dataset collection.

Pairs of site images and corresponding BIM model views were selected according to criteria such as
angle, perspective, lighting control, and balanced image composition. These pairs were used to build a
dataset for training the model.

The Siamese model workflow was explained step by step: setting up the libraries, resizing and
preprocessing the data, preparing triplets, creating an embedding model, and applying the triplet loss
function. The model was trained first on a small dataset, then retrained on a larger one, with both training
and validation losses monitored.

The results of implementing the Siamese network with triplet loss were promising. The model learned
to bring similar site images and BIM images closer together while pushing dissimilar ones farther apart.
Despite the limited dataset, the model showed rapid learning, a decreasing loss trend, and no clear signs
of overfitting.

It can therefore be said that the model successfully automated the task of visual similarity checking,
demonstrating the feasibility of comparing as-built images with as-designed BIM references. This
supports automation in QA/QC, allowing non-compliant or defective elements to be flagged early,
reducing human error, and ensuring more consistent inspections.

This study focused on one project element—the wall—although some MEP components were included.
A larger scope would require datasets covering other elements, such as ceilings and structural systems.
For instance, in data centers, dense ceiling-level MEP installations (ducts, pipes, trays) would need their
own dedicated datasets to achieve reliable automation.

Another limitation was dataset size and precision. Time constraints limited the dataset preparation,
which impacted the model’s generalisation. Small datasets also increased the risk of overfitting and
unstable validation performance.

Several extensions of this research are possible.

- Expanded Datasets: Building larger, more precise datasets for different elements (e.g., ceilings,
ducts, or structural frames) would improve generalisation.

- Change Detection Methods: Inspired by other fields, such as Wu et al. (2018) in book cover
comparison, change detection could be applied in construction to detect discrepancies between
BIM models and site images more efficiently.

- Enhanced Al Architectures: Exploring other architectures, such as transformers or self-
supervised learning methods, could strengthen performance when labeled datasets are limited.

- Practical Integration: Future studies should focus on integrating such models directly into
construction workflows, ensuring that visual inspections, BIM comparisons, and defect
detections are part of daily site operations.
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This dissertation shows that Al-driven approaches—specifically Siamese networks with triplet loss—
can play a meaningful role in advancing the digitalization of QA/QC in construction. While the scope
of the study was limited, the findings highlight the potential of combining BIM, computer vision, and
deep learning to improve inspection accuracy, reduce costs, and enhance efficiency. With further
development and larger datasets, this approach could contribute significantly to the future of automated
quality control in construction projects.
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APPENDICES

APPENDIX 1: CODE

1 Setup

import matplotlib.pyplot as plt
import numpy as np

import os

import random

import tensorflow as tf

from pathlib import Path

from keras import applications
from keras import layers

from keras import losses

from keras import ops

from keras import optimizers
from keras import metrics

from keras import Model

from keras.applications import resnet

target_shape = (200, 200)

2 Load Data set

Ipip install gdown

2~  Show hidden output

from google.colab import drive
drive.mount('/content/drive')

1

4

from pathlib import Path

cache_dir = Path("/content/drive/MyDrive/250709_Siamese_model_trial")

anchor_images_path = cache_dir / "site"
positive_images_path = cache_dir / "bimmodel”

lgdown --id 16P1593jX1_3Ch2rjsWIPeI_CgI33dtTLQ
lgdown --id 1NeZhqillJeFYrjE@zx8P-mgBInTepSM3

lunzip -oq {cache_dir / "site.zip"} -d {cache_dir}
lunzip -oq {cache_dir / "bimmodel.zip"} -d {cache_dir}

2~  Show hidden output

def preprocess_image (filename):
Load the specified file as a JPEG image, preprocess it and
resize it to the target shape.

image_string = tf.io.read file(filename)

image = tf.image.decode_jpeg(image_string, channels=3)
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize(image, target_shape)

return image

def preprocess_triplets(anchor, positive, negative):
Given the filenames corresponding to the three images, load and
preprocess them,

return (
preprocess_image(anchor),

~ Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
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preprocess_image(positive),
preprocess_image (negative),

anchor_images = sorted(
[str(anchor_images_path / f) for f in os.listdir(anchor_images_path)]

positive_images = sorted(
[str(positive_images_path / f) for f in os.listdir(positive_images_path)]

image_count = len(anchor_images)

anchor_dataset = tf.data.Dataset.from_tensor_slices(anchor_images)
positive_dataset = tf.data.Dataset.from_tensor_slices(positive_images)

rng = np.random.RandomState(seed=42)
rng.shuffle(anchor_images)
rng.shuffle(positive_images)

negative_images = anchor_images + positive_images
np.random.RandomState(seed=32).shuffle(negative_images)

negative_dataset = tf.data.Dataset.from_tensor_slices(negative_images)
negative_dataset = negative_dataset.shuffle(buffer_size=4096)

dataset = tf.data.Dataset.zip((anchor_dataset, positive_dataset, negative_dataset))
dataset = dataset.shuffle(buffer_size=1024)
dataset = dataset.map(preprocess_triplets)

train_dataset = dataset.take(round(image_count * 9.8))
val_dataset = dataset.skip(round(image_count * ©.8))

train_dataset = train_dataset.batch(32, drop_remainder=False)
train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE)

val_dataset = val_dataset.batch(32, drop_remainder=False)
val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE)

def visualize(anchor, positive, negative):
"""Visualize a few triplets from the supplied batches."""

def show(ax, image):
ax.imshow(image)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

fig = plt.figure(figsize=(9, 9))

axs = fig.subplots(3, 3)

for i in range(3):
show(axs[i, @], anchor[i])
show(axs[i, 1], positive[i])
show(axs[i, 2], negative[i])

visualize(*1list(train_dataset.take(1).as_numpy_iterator())[@])

=¥ Show hidden output

base_cnn = resnet.ResNet50(
weights="imagenet”, input_shape=target_shape + (3,), include_top=False

)

flatten = layers.Flatten()(base_cnn.output)

densel = layers.Dense(512, activation="relu")(flatten)
densel = layers.BatchNormalization()(densel)

dense2 = layers.Dense(256, activation="relu")(densel)
dense2 = layers.BatchNormalization()(dense2)

output = layers.Dense(256)(dense2)
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embedding = Model(base_cnn.input, output, name="Embedding")

trainable = False
for layer in base_cnn.layers:
if layer.name "conv5_blockl out":
trainable = True
layer.trainable = trainable

class Distancelayer (layers.Llayer):
This layer is responsible for computing the distance between the anchor
embedding and the positive embedding, and the anchor embedding and the
negative embedding.

def __init__ (self, **kwargs):
super().__init_ (**kwargs)

def call(self, anchor, positive, negative):
ap_distance = ops.sum({tf.square(anchor - positive), -1)
an_distance = ops.sum{tf.square(anchor - negative), -1)
return (ap_distance, an_distance)

anchor_input = layers.Input(name="anchor", shape=target_shape + (3,))
positive_input = layers.Input(name="positive", shape=target_shape + (3,))
negative_input = layers.Input{name="negative", shape=target_shape + (3,))

distances = Distancelayer()(
embedding (resnet.preprocess_input(anchor_input)),
embedding(resnet.preprocess_input(positive_input)),
embedding (resnet.preprocess_input(negative_input)),

)

siamese_network = Model(
inputs=[anchor_input, positive_input, negative_input], outputs=distances

class SiameseModel (Model):
"""The Siamese Network model with a custom training and testing loops.

Computes the triplet loss using the three embeddings produced by the
Siamese Network.

The triplet loss is defined as:
L(A, P, N) = max(|f(A) - F(P)[|= - |f(A) - F(N)|* + margin, @)

def __init_ (self, siamese_network, margin=e.5):
super().__init_ ()
self.siamese_network = siamese_network
self.margin = margin
self.loss_tracker = metrics.Mean(name="loss")

de

i

call(self, inputs):
return self.siamese_network(inputs)

de

&

train_step(self, data):

with tf.GradientTape() as tape:
loss = self._compute_loss(data)

gradients = tape.gradient(loss, self.siamese_network.trainable weights)

self.optimizer.apply gradients(
zip(gradients, self.siamese_network.trainable_weights)

self.loss_tracker.update_state(loss)
return {"loss": self.loss_tracker.result()}

de

&

test_step(self, data):
loss = self._compute_loss(data)

self.loss_tracker.update_state(loss)
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return {"loss": self.loss_tracker.result()}

def _compute_loss(self, data):

ap_distance, an_distance = self.siamese_network(data)

loss = ap_distance - an_distance
loss = tf.maximum(loss + self.margin, ©.8)
return loss

@property
def metrics(self):

return [self.loss_tracker]

siamese_model = SiameseModel(siamese_network)
siamese_model. compile(optimizer=optimizers.Adam(@.0ee1))
siamese_model.fit(train_dataset, epochs=10, validation_data=val_dataset)

=¥  Show hidden output

sample = next(iter(train_dataset))
visualize(*sample)

anchor, positive, negative = sample

anchor_embedding, positive_embedding, negative_embedding = (
embedding(resnet.preprocess_input(anchor)),
embedding(resnet.preprocess_input(positive)),
embedding(resnet.preprocess_input(negative)),

)

=¥ Show hidden output

def compute_triplet_accuracy(dataset):
correct = @
total = @

for anchor, positive, negative in dataset:
ap_distance, an_distance = siamese_model.siamese_network(
[anchor, positive, negative]

)

correct += tf.reduce_sum(tf.cast(ap_distance < an_distance, tf.int32)).numpy()
total += anchor.shape[@]

accuracy = correct / total
return accuracy

train_acc = compute_triplet_accuracy (train_dataset)
val_acc = compute_triplet_accuracy(val_dataset)

print("Train accuracy:", train_acc)
print("validation accuracy:", val_acc)

2>  Show hidden output
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