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RESUMO 

Os métodos tradicionais de QA/QC baseiam-se principalmente em inspeções manuais ou visuais, que 

são demoradas, subjetivas e propensas a erro humano. A automatização do QA/QC através da integração 

de Inteligência Artificial (IA), particularmente durante a fase de execução, contribui para garantir a 

conformidade, minimizar repetições de trabalhos e melhorar os resultados dos projetos. 

Nesta investigação é feita uma revisão da literatura sobre o estado atual das tecnologias digitais e das 

aplicações de IA em QA/QC, desenvolve uma metodologia para integrar a IA em QA/QC com especial 

enfoque na triplet network of the Siamese architecture e aplica essa metodologia num estudo de caso 

utilizando dados reais de um projeto de construção. O conjunto de dados é constituído por imagens “as-

built” e imagens de modelos BIM “as-designed”, recolhidas através de uma plataforma de visão 

computacional. 

O estudo de caso investiga um modelo de IA (a Siamese network with triplet loss) para comparar a 

similaridade entre imagens “as-built” e modelos BIM “as-designed”. O modelo é treinado e avaliado em 

conjuntos de dados pequenos e grandes, sendo a sua precisão analisada em termos de capacidade de 

generalização e potencial de aplicação em tarefas reais de QA/QC. Os resultados demonstram o 

potencial das arquiteturas baseadas em redes Siamese para automatizar a deteção de inconsistências 

entre o projeto e a execução, proporcionando uma base para a futura integração da IA na gestão da 

qualidade em construção. 

 

Palavras chave: as-built, as-designed, IA, QA/QC, Siamese Network, triplet loss 
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ABSTRACT 

Traditional QA/QC methods largely rely on manual or visual inspections, which are time-consuming, 

subjective, and prone to human error. Automating QA/QC by integrating Artificial Intelligence (AI), 

particularly during the execution phase, helps ensure compliance, minimize rework, and improve project 

outcomes. 

This research conducts a literature review on the current state of digital technologies and AI applications 

in QA/QC, develops a methodology for integrating AI into QA/QC with a particular focus on the triplet 

network of the Siamese architecture, and applies this methodology in a case study using real construction 

project data. The dataset consists of as-built site imagery and as-designed BIM model imagery collected 

through a computer vision platform. 

The case study investigates an AI model (a Siamese network with triplet loss) to compare the similarity 

between as-built site imagery and as-designed BIM models. The AI model is trained and evaluated on 

both small and large datasets, and its accuracy is assessed in terms of generalization ability and potential 

for real-world QA/QC tasks. Results demonstrate the potential of Siamese-based architectures to 

automate the detection of inconsistencies between design and execution and provide a foundation for 

future integration of AI in construction quality management. 

 

Keywords: AI, as-built, as-designed, QA/QC, Siamese Network, triplet loss 
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1. INTRODUCTION 

The terms quality assurance (QA) and quality control (QC) are often used interchangeably. Since QC 

is part of QA, maintaining a clear distinction between the two is not always straightforward. QA is 

defined as all planned and systematic actions necessary to provide confidence that a structure, system, 

or component will perform satisfactorily and conform to project requirements. QC, on the other hand, 

refers to the specific procedures involved in the quality assurance process. These procedures include 

planning, coordinating, developing, checking, reviewing, and scheduling the work. Quality is achieved 

when individuals perform their tasks carefully and in accordance with project requirements (O’Brien, 

1989). In the construction industry, QA and QC have long faced inefficiencies due to their reliance on 

manual inspections. As construction demands increase and projects become more technologically 

advanced, the need for innovative QA/QC methods that enhance precision and efficiency has become 

urgent (Toyin and Sattineni, 2025). 

The main aim of this research is to address inefficiencies in QA/QC processes, particularly during the 

execution phase. The study seeks to enhance QA/QC by integrating Artificial Intelligence (AI) to 

automate defect detection. To achieve this, an AI model—a Siamese network with triplet loss—will be 

implemented to compare as-built site imagery with as-designed BIM models. The model will be trained 

and evaluated on both small and large datasets, and its accuracy will be assessed in terms of 

generalization ability and potential for real-world QA/QC tasks. The central focus of this study is 

therefore the automation of comparing as-built data with as-designed models using AI. 

This research is conducted in collaboration with BIMMS, a company specialized in Integrated 

Engineering Services through Digital Construction. The company uses a platform based on computer 

vision, which provides access to imagery from drones, 360° cameras, mobile devices, and laser scanners. 

This platform represents an advanced digital construction tool, as it enables remote visual visits to 

construction sites and aligns real-world conditions with BIM. It adds significant value to QA/QC by 

facilitating remote visual inspection and progress monitoring. Nevertheless, even when conducted 

remotely, visual inspection remains time-consuming and prone to human error. Against this backdrop, 

the research aims to increase the level of automation in QA/QC tasks, moving beyond exclusively visual 

methods. 

The study will adopt a diverse approach consisting of a literature review, a methodology chapter, and a 

case study with empirical analysis in order to fulfil its objectives. The literature review will begin by 

emphasising the limitations of traditional methods and the potential of advanced digital technologies in 

QA/QC. It will then highlight AI-driven solutions in particular and identify research gaps in existing 

studies. Finally, the review will classify case studies into categories of digital innovations for QA/QC 

in construction projects—such as additive manufacturing, advanced inspection and tracking, and data 

analytics. For each category, the case studies will be summarised by specifying their objectives, the AI 

tools used, the results obtained, and the identified gaps. 
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The methodology will address two components of the case study. The first concerns the future choice 

of the AI model and will therefore introduce the concepts related to AI. The second will focus on the 

preparation of the dataset, beginning with its origin in a computer vision platform and followed by data 

processing. This part will describe the techniques applied to improve both the visual quality of the 

images and the model’s ability to detect relevant features. 

The chapter will begin by defining concepts related to Artificial Intelligence (AI). It will provide a 

general introduction to AI and explain its main subfields, namely Machine Learning (ML) and Deep 

Learning (DL). The discussion will then examine Artificial Neural Networks (ANNs) as a class of ML 

methods, preparing the ground for an explanation of Convolutional Neural Networks (CNNs). CNNs 

are deep ANNs designed to process grid-structured data, such as pixel-based images, and they will serve 

as subnetworks within more advanced models such as the Siamese network. 

The following subchapter will focus on the Siamese network, which will constitute the core of the final 

AI model. It will outline its evolution and applications, leading to the introduction of the triplet network, 

which belongs to the Siamese family but extends the approach to three inputs. The choice of the Siamese 

network will be justified by its ability to compare two outputs: the as-designed and as-built data. In 

practice, these outputs will consist of pairs of images extracted from the computer vision platform: one 

representing a site image and the other the aligned BIM image. 

Subsequently, this chapter will introduce the computer vision platform used in the study. It will explain 

its functionalities for the construction industry, as well as the technologies implemented, before 

concluding with a discussion of the tool’s limitations, particularly in relation to the QA/QC field. This 

chapter will conclude by presenting the processing of the extracted data, explaining the selection of 

images, the challenges encountered, and the techniques applied to frame the images. 

The case study chapter will present the practical part of this research, including the obtained results and 

their analysis. Following this logic, the chapter will begin by introducing the construction project from 

which the dataset will be prepared, namely a large-scale data center project. It will then provide details 

of this dataset, justify the choice of image pairs related to the project, and demonstrate the 

implementation of the data processing described in the methodology chapter. 

Subsequently, the chapter will develop the workflow of the AI model step by step. It will begin with an 

introduction to the model and an explanation of its triplet network design, which aims to learn visual 

similarity by training on triplets of images: an anchor representing the site image, a positive representing 

the corresponding image from the BIM model, and a negative generated by shuffling site and BIM model 

images. The chapter will then detail the setup of the model, explaining the required libraries. Next, the 

preparation of the data will be described, from resizing images to preprocessing the triplets and 

visualising them. The workflow will explain the setup of the Siamese model, starting with the creation 

of the embedding model, which converts images into vectors, and continuing with the Siamese model 

itself, which calculates the squared distances between the anchor–positive and anchor–negative 

embeddings. Using the prepared triplet dataset, the model will then be trained with a triplet loss function 

that encourages the network to bring similar images closer together while pushing dissimilar ones further 

apart. Finally, the model’s accuracy in distinguishing between similar and dissimilar images will be 

evaluated. 
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The last section of this chapter will analyse the results. First, the model will be trained on a small dataset, 

and the training/validation loss will be evaluated over epochs. Second, the dataset will be increased and 

undergo the same evaluation in order to track possible overfitting. Finally, the accuracy results will be 

assessed on both the small and the large datasets to measure how often the model makes correct 

predictions. 
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2. LITERATURE REVIEW 

This literature review follows a structured methodology, starting with a global overview and moving 

toward a targeted thematic analysis. It begins by framing the field of QA/QC in construction, 

emphasising the limitations of traditional methods and the potential of advanced technologies, 

particularly AI-driven solutions. It subsequently identifies research gaps in existing studies. Based on 

these digital technologies, the literature review classifies case studies into categories such as additive 

manufacturing, advanced inspection and tracking, and data analytics. For each category, pertinent case 

studies are summarised by specifying the objectives, the AI tools used, the results obtained, and the 

identified gaps. Finally, a synthesis highlights the recurring challenges and provides insights for 

potential enhancements and future research. 

2.1. QA/QC and Digital technologies: 

Quality Assurance (QA) and Quality Control (QC) are crucial in the construction industry to ensure that 

projects meet standards for safety, functionality, and durability. The growing complexity and scale of 

modern projects, combined with the implementation of digital technologies in construction processes, 

make traditional QA/QC methods—often relying on manual inspections and reactive measures—

insufficient to meet the evolving demands of the industry (Tang et al., 2022; Toyin et al., 2025). 

Manual inspections in QA/QC are time-consuming and costly in the construction industry. These 

inefficiencies, combined with increasing construction demands and the growing technological 

complexity of projects, create an urgent need for innovative QA/QC methods that enhance precision and 

efficiency. Toyin (2025) presents a study showing that, although attempts have been made to integrate 

technology into QA/QC practices, gaps remain in understanding precision and efficiency, as well as in 

documenting and synthesising these advancements. 

Traditional methods lack the accuracy and efficiency necessary to manage today’s high-risk 

construction environment (Blinn et al., 2017). Therefore, there is a growing and critical demand for 

innovative approaches that leverage digital technologies to transform quality management processes 

(Faybishenko et al., 2022). Emerging technologies such as Non-Destructive Testing (NDT), Building 

Information Modelling (BIM), Terrestrial Laser Scanning (TLS), and big data analytics are at the 

forefront of this transformation (Hoegh et al., 2011; Liu and Wen, 2023; Oliveira et al., 2023). 

Technological advancements, their applications, and future opportunities show that TLS and BIM 

enhance inspection accuracy and reduce both time and labour costs, while AI-driven NDT improves the 

accuracy of defect detection. However, challenges remain, such as the complexity of data processing 

and difficulties in integration. It is suggested that more precise practical applications of these 

technologies could make QA/QC more data-driven and efficient. The construction industry can take 

advantage of these findings to optimise quality management. 
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2.1.1. Global Research Trends in Digital Technologies for QA/QC 

Toyin (2025) suggests that research in this domain has been predominantly driven by contributions from 

three continents: Asia, North America, and Europe. Figures 1 and 2 show that from 2011 to 2024, China 

ranks first, with affiliations in eight papers, followed by the USA with six and Germany with five. The 

United Kingdom contributed three papers, while Singapore and Portugal each had two affiliated papers. 

Other countries, such as Greece, Sri Lanka, Austria, Slovenia, Switzerland, Sweden, Canada, and 

Russia, were each associated with only one paper.  

 

Figure 1 – Countries with affiliated articles (Toyin, 2025) 

 

Figure 2 – Number of publications from 2011 to 2024 (Toyin, 2025) 

2.1.2. Advanced Digital Technology Integration in QA/QC 

The study by Toyin (2025) shows that advanced digital technologies have added value to QA/QC 

processes in the construction industry. He proposed a classification of these technologies into six groups: 

Non-Destructive Testing (NDT) Methods, Additive Manufacturing & Material Assessment, Real-Time 

Monitoring & Embedded Systems, Digital Construction Platforms, Data Analytics & Communication 

Tools, and Advanced Inspection & Tracking Systems. In addition, he highlighted their practical 

applications, such as high-precision inspection capabilities, the fabrication of complex components with 

high accuracy, and the reduction of errors while improving communication among project stakeholders. 

Table 1 summarises this classification and the contribution of each technology group to QA/QC in the 

construction field. 
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Table 1 – Key Digital Innovations for QA/QC in Construction Projects (Toyin, 2025) 

Technology Group Technologies Application in QA/QC 

Technology Group 

Testing (NDT) 

Methods 

- Ultrasonic 

Tomography  

- Terrestrial Laser 

Scanning (TLS) 

These technologies provide non-invasive, high-

precision inspection capabilities. Ultrasonic 

Tomography detects internal anomalies like 

delamination in concrete structures, ensuring safety 

and durability. TLS automates geometric quality 

inspections, capturing 3D point clouds to measure 

deviations with millimeter-level accuracy, 

significantly reducing time compared to manual 

inspections. 

Additive 

Manufacturing & 

Material 

Assessment 

- 3D Printing  

- Near-Infrared 

(NIR) 

Technology 

3D Printing is used for fabricating complex 

components with high precision, ensuring real-time 

quality control during the printing process. NIR 

Technology evaluates critical properties of 

engineered wood, such as moisture content and 

surface quality, providing rapid, non-invasive quality 

assessments. Both technologies focus on improving 

material quality and ensuring structural integrity. 

Real-Time 

Monitoring & 

Embedded 

Systems 

- Embedded 

Sensors  

- IT-Driven 

Systems 

Embedded Sensors continuously monitor structural 

and environmental parameters, enabling automated, 

real-time quality inspections through cloud-based 

platforms. IT-Driven Systems facilitate efficient 

information flow and visual management, reducing 

errors and improving communication among project 

stakeholders. 

Digital 

Construction 

Platforms 

- BIM  

- Digital Twin 

Technology 

BIM provides a 3D collaborative environment for 

integrating project data, supporting proactive quality 

management and early issue resolution. Digital Twin 

Technology extends this by offering real-time virtual 

replicas of physical structures, enhancing predictive 

maintenance and decision-making. Both technologies 

streamline quality control and optimize resource 

allocation. 

Data Analytics & 

Communication 

Tools 

- Big Data & 

Mobile-ICT  

- Mobile 

Big Data and Mobile-ICT platforms support 

predictive QA/QC through comprehensive data 

analysis, improving decision-making and resource 

optimization. Mobile Apps and 3D Point Clouds 

enhance field inspections, providing precise site 
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Applications & 

3D Point Clouds 

models and facilitating instant data access and 

reporting. 

Advanced 

Inspection & 

Tracking Systems 

- LiDAR  

- Drones, RFID, 

& Augmented 

Reality (AR) 

LiDAR offers high-accuracy mapping for verifying 

structural alignments, while Drones capture site 

images for aerial inspections. RFID tags track 

material movement, and AR assists in visualizing 

quality issues and verifying construction tasks 

interactively. These technologies streamline 

inspections and improve tracking and verification 

processes. 

 

2.1.3. Challenges and gaps in Modern Technology Integration in QA/QC 

The implementation of advanced digital technologies in QA/QC has led to improvements in inspection 

accuracy, streamlined workflows, and reductions in labour and time costs. However, the field still faces 

several challenges, including data processing complexities, interoperability limitations, and high 

implementation costs. The interpretation of the previous digital technologies classification reveals, for 

instance, that although drones enhance site inspections, they also present operational and regulatory 

challenges, limited battery autonomy, dependency on weather conditions, and restricted capabilities for 

AI-based defect detection. Similarly, while AI-driven defect detection can significantly improve 

accuracy, it demands substantial computational resources, raises ethical and accountability concerns, 

and may result in false positives or negatives. These factors contribute to the ongoing challenges of 

effectively integrating drones and AI into QA/QC processes in the construction industry. 

Future research intentions include deploying autonomous inspections, developing AR-BIM-based 

inspection models, enhancing AI-driven analytics, and implementing quantum-secured data 

transmission to create self-regulating quality control systems. According to Toyin (2025), some 

potential directions for future research include: 

- Automation and Intelligent Systems: analysing the use of drones equipped with advanced 

sensors and AI to monitor construction sites in real time, with a focus on the accuracy and 

efficiency of quality inspections. Developing self-operating robots and drones for real-time 

quality inspections while minimising human involvement. Creating machine learning 

algorithms capable of predicting potential quality issues and optimising QA/QC practices 

through the analysis of historical and real-time data. Guiding future research toward advanced 

models based on computer vision and AI that can accurately identify and classify defects in 

construction components using image and video data. 

 

- Advanced Technology Integration: investigating how quantum computing can be used to 

address the challenge of optimising QA/QC and ensuring the secure transmission of data for 

records and inspection reports. Leveraging the integration of digital twins into QA/QC 
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workflows, focusing on how real-time data from digital models can enhance QC processes and 

support better decision-making. Furthermore, evaluating the potential of AR to assist QA/QC 

inspections by providing real-time overlays of construction specifications and defect 

visualisations. 

 

- Fully Autonomous Inspections: QA/QC processes will be conducted by autonomous drones, 

robots, and smart sensors deployed on construction sites. These systems will continuously 

inspect quality by comparing real-time data with digital models and project specifications. 

Construction equipment will have the capacity to automatically correct detected errors using 

quality monitoring systems. For instance, robotic arms will be able to adjust their own 

calibration based on sensor feedback to ensure high accuracy and precision in construction 

processes. 

 

- AI and Machine Learning: analysing vast amounts of data to predict potential quality issues is 

expected to become increasingly reliable thanks to AI and machine learning. AI-powered image 

recognition will detect anomalies and non-conformance through video and image analysis. 

The following subsection focuses on AI solutions implemented in QA/QC to enhance automation, 

efficiency, and accuracy—particularly in defect detection, safety monitoring, and predictive quality 

control—while also highlighting existing research gaps. 
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2.2. QA/QC and AI 

The construction industry is a field where the advancement of Artificial Intelligence (AI) creates new 

opportunities. AI and machine learning are key areas of innovation in making construction “smart.” 

Applying machine learning in construction offers significant potential, particularly in site supervision, 

automatic detection, and intelligent maintenance. 

A notable milestone in this development was the introduction of AlexNet in 2012, a deep neural network 

that significantly advanced image classification using deep learning. This sparked a wave of research in 

computer vision, leading to a steady increase in related publications. As illustrated in Figure 3, the 

number of papers referencing AlexNet for image classification in construction rose consistently between 

2008 and 2020, with a sharp growth trend beginning in 2016 (Xu et al., 2021). 

 

 

Figure 3 – Number of publications from 2008 to 2020 introducing AlexNet for image 

classification (Xu, Y, 2021) 

 

Since 2017, the notable performance of deep learning in computer vision has led to its large-scale 

implementation in various construction fields, such as safety (Fang et al., 2018, 2019; Wu and Cai, 

2019), road surveying (Zhang and Yang, 2016; Wu et al., 2019), bridge inspection (Deng et al., 2020; 

Dorafshan and Azari, 2020; Zhang and Yang, 2020), and on-site operation monitoring (Fang and Li, 

2018a; Fang and Ding, 2018; Guo et al., 2020). Research distribution varies geographically. As shown 

in Figure 4, Chinese researchers predominantly focus on safety management, likely due to the country’s 

massive infrastructure investments—reported to have reached USD 2.6 trillion in 2018, representing 

19.6% of national GDP (China National Bureau of Statistics). In contrast, researchers in the United 

States demonstrate a more diversified focus across QA/QC topics. 
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Figure 4 – The relative participation of countries in diffrent application fields (Xu, Y, 2021) 

One key observation in the literature is that image data remains the dominant source for applying deep 

learning in construction. This is largely attributed to the high performance of deep learning in image 

processing, while other data types are used less frequently. As shown in Figure 5, the most commonly 

implemented deep learning algorithms are Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and transfer learning approaches. Current research interest is particularly focused on 

Faster R-CNNs and Long Short-Term Memory (LSTM) networks. 

 

Figure 5 – Research field: algorithm (left) and applications (right) (Xu, Y, 2021) 

While the primary implementation of object detection and image segmentation models in construction 

focuses on defect detection—particularly in concrete crack recognition and bridge inspection—visual 

characteristics vary across applications. As a result, there is no single algorithm or network structure 

that is universally applicable. Researchers must therefore select and adapt algorithms and network 

architectures to address specific construction challenges. In this context, AI has also been applied in 

various other fields beyond construction. For example, Siamese networks have been used for image 

matching (Melekhov et al., 2016), real-time tracking (He et al., 2018), and object tracking (Zhang et al., 

2017). This type of neural network will be further discussed in the methodology chapter due to its 

relevance to the present study. 
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2.3. AI implementation in Digital technology for QA/QC (case studies) 

Building on the interpretation provided in the previous section, which outlined the role of digital 

technologies and AI implementation in QA/QC, this section organises selected case studies according 

to the previously defined classification of digital technologies implemented for QA/QC. For each 

category, several AI models will be presented, along with a brief description of their specific 

applications, strengths, and limitations. This approach not only illustrates the practical implementation 

of these technologies in real-world construction projects but also highlights the diversity of methods and 

contexts in which AI is applied to enhance quality assurance and quality control processes. 

2.3.1. Additive Manufacturing & Material Assessment 

Sri Kalyan (2016) proposes a real-time quality assessment pipeline in Additive Manufacturing (AM). It 

includes laser scanning to generate point clouds, rasterisation to convert point clouds into height maps, 

and analysis with a multi-region Hybrid Convolutional Auto-Encoder (HCAE) to detect under-printed 

and over-printed zones. The study aims to develop an AI-based system capable of detecting and 

mitigating printing abnormalities in real time and performing in-situ adjustments to enhance the final 

quality of printed parts. The main challenges to ensuring reliable and repeatable printing are: 

- Systematic and random errors  

- Lack of real-time monitoring and control  

- Difficulty in maintaining optimal process parameters layer by layer 

 

Table 2 – Case studies for Additive Manufacturing & Material Assessment 

Technology 

Group 
Refrence 

Digital 

Technology tool 
AI implemented 

Application in 

QA/QC 

Additive 

Manufacturing & 

Material 

Assessment 

(Sri Kalyan, 

2016) -  AM 

defect detection 

Laser scanning HCAE 
Detect print 

defects 
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2.3.2. Advanced Inspection & Tracking Systems 

Digital technologies play an important role in streamlining inspections and improving tracking and 

verification processes. For instance, LiDAR enables high-accuracy mapping for verifying structural 

alignments, while drones capture site images and enable aerial inspections. Additionally, RFID tags 

track material movement, and AR helps visualise quality issues and interactively verify construction 

tasks (Toyin, 2025). 

(Ahmad W, 2021) analyses the application of supervised machine learning techniques such as Bagging, 

AdaBoost, Decision Tree, and Gene Expression Programming to predict compressive strength (CS) 

containing supplementary cementitious materials (SCM) like fly ash and blast furnace slag. To validate 

the models, the study implemented k-fold cross-validation and sensitivity analysis. Strong predictive 

capability was shown, with the best performance achieved by the Bagging model. This provides a 

solution to reduce dependence on time-intensive physical testing in QA/QC in construction. However, 

the accuracy of ML predictions varies depending on the type of model used, the number and quality of 

input features, and the data volume. This makes it difficult to generalise models across different datasets. 

(Chou, 2022) proposes the Metaheuristics-Optimized Stacking System (MOSS), a predictive framework 

for estimating scour depth at bridge piers. MOSS combines the Forensic-Based Investigation (FBI) 

optimisation algorithm with two base models: Least Squares Support Vector Regression (LSSVR) and 

Radial Basis Function Neural Network (RBFNN) across a stacking ensemble architecture. MOSS 

achieves significant accuracy gains compared to single ML models, voting ensembles, hybrid methods, 

empirical equations, and mathematical approaches, by simultaneously optimising all hyperparameters 

of the constituent models. When tested on laboratory, field, and complex pier datasets, MOSS achieved 

up to 41% lower prediction errors compared to other approaches. The complexity of scour processes, 

the limitations of empirical formulas, and the need for adaptable, high-accuracy models across diverse 

environments are the key challenges addressed. 

(De Filippo, 2023) worked on inspections of concrete façades to ensure the safety and sustainability of 

ageing structures. Traditional approaches, which are mainly qualitative, are time-consuming, expensive, 

and dependent on human expertise (Kwan & Wong, 2005). Drone integration (UAV) facilitates access 

to difficult zones and accelerates the collection of visual and thermal data (Mavromatidis et al., 2014). 

Through both computer vision and deep learning, the collected data enabled automatic pathological 

defect detection such as cracks, delamination, stains, leakages, debonding, and moisture ingress. This 

represents a rapid and scalable quantitative approach. Visual detection relied on a model combining 

RetinaNet with ResNet50 and FPN for macro inspection, while detailed evaluation of defects was 

realised through a Fully Convolutional Network (FCN-8) with VGG16 for micro inspection. For thermal 

anomalies, a visual computer approach was implemented with thermal outline detection. However, the 

authors highlight certain limitations of this study, notably the restricted dataset, false positives related 

to irrelevant objects, reflections on window glass, and poorly collected data, as well as the necessity to 

continuously enrich the dataset to improve AI model generalisation. 

(The study purpose of Katsamenis, 2023) is to develop an automated, fast, and reliable method to detect 

road defects in real time from drone images, enhancing safety and reducing inspection and maintenance 

costs. It implements a YOLOv5 object detection model trained on UAV (drone) images to classify and 
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detect road defects (cracks and potholes). The images were processed and trained on a GPU, and the 

model’s performance was evaluated using IoU. 

(Ma, 2022) proposes an AI system based on deep learning (YOLOv3) to identify painting defects on 

large steel plates in shipyards. It offers an alternative to traditional visual inspections that rely on 

workers. The model was trained on around 4,000 images, reached 90% accuracy, and was integrated 

with a PLC to ensure automatic detection of defects and to stop the conveyor in case of problems. This 

solution increased productivity by 11% and reduced quality incidents to 1%. It represents a step toward 

intelligent industry. Future improvements are expected to enhance accuracy through segmentation and 

data augmentation. 

(Raoofi, H. and Motamedi, A., 2020) worked on a deep-learning-based computer vision method to detect 

and segment excavators and dump trucks on construction sites using Mask R-CNN. To address the 

challenge of a small dataset, they employed transfer learning from the Microsoft COCO dataset. The 

model effectively leveraged pre-trained feature extraction, and fine-tuning was applied to enhance 

accuracy and reduce validation loss. The approach targeted automation of progress monitoring, enabling 

more efficient and accurate tracking of heavy machinery. Key challenges included the limited size of 

the training dataset, high variability of jobsite conditions, and the difficulty of balancing segmentation 

accuracy with processing speed. 

 

Table 3 – Case studies for Advanced Inspection & Tracking Systems 

Technology 

Group 
Reference 

 

Digital 

Technology 

tool 

AI implemented 
Application in 

QA/QC 

 

 

 

 

 

Advanced 

Inspection 

& Tracking 

Systems 

(Ahmad 

W,2021) - ML 

for concrete CS 

- 
Bagging, AdaBoost, 

Decision Tree, GEP 

Predict concrete 

compressive 

strength 

(Chou, 2022) – 

Scour depth 

prediction 

- 
MOSS (LSSVR + RBFNN 

+ FBI optimizer) 

Predict scour 

depth 

(De Filippo, 

2023) – Façade 

defects 

- 

 

RetinaNet+ResNet50+FPN, 

FCN-8+VGG16 

Detect facade 

defects 

(Katsamenis, 

2023) – UAV 

road defects 

UAV  YOLOv5 
Detect 

cracks/potholes 
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(Ma, 2022) – 

Shipyard 

painting defects 

PLC YOLOv3 
Detect painting 

defects 

(Raoofi, 2020) 

– Machinery 

detection 

- 
Mask R-CNN + transfer 

learning (COCO) 
Track machinery 

(Sri Kalyan, 

2016) – 

Additive 

manufacturing 

(AM) defect 

detection 

Laser scanning HCAE 
Detect print 

defects 

 

2.3.3. Data Analytics & Communication Tools: 

Big Data and Mobile-ICT are technologies that enable predictive QA/QC through comprehensive data 

analysis, enhancing decision-making processes and improving resource optimisation. Mobile apps and 

3D point clouds, on the other hand, provide precise site models and facilitate both reporting and data 

access. 

(Braun, 2019) implements inverse photogrammetry and 4D BIM to automate site image labelling for 

machine learning applications. UAV-captured images are used to reconstruct 3D point clouds of the 

construction site, which are then aligned with the BIM model to project semantic data of elements onto 

2D corresponding images. This approach enables the automated generation of labelled datasets of high 

quality for computer vision models. The challenges of this study arise from missing or occluded data—

particularly when temporary structures such as scaffolding obscure elements in the scene. 

(Braun, 2020) proposes a BIM-integrated machine learning approach to enhance automated construction 

progress monitoring. By combining Structure from Motion (SfM) for 3D reconstruction with BIM’s 

semantic and temporal knowledge, the method projects as-planned building elements into image space 

and applies machine learning-based object detection to verify actual progress. This integration enables 

a detection improvement of up to 50% compared to purely geometric as-planned vs. as-built 

comparisons, especially in scenarios with occlusions and reconstruction inaccuracies. The approach 

addresses limitations in current progress monitoring, which often ignores semantic context and suffers 

from incomplete detection in large, complex sites. 

(Serradilla, 2022) presents a review of deep learning models applied to predictive maintenance (PdM). 

This technology helps identify the most suitable architectures for different steps: anomaly detection, 

diagnosis, prognosis, and mitigation. The study is based on the analysis of 87 publications that appeared 

between 2016 and 2021 in scientific databases such as Scopus and IEEE Xplore. It classifies the works 

according to the PdM stage and the type of architecture used (CNN, RNN, LSTM, autoencoders, GAN, 

SOM). The main contributions are the complete classification of models, the integration of less-explored 
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techniques such as SOM, OC-NN, and generative models, and the highlighting of strategies to manage 

data variability and the lack of failure data, especially through transfer learning and ensemble learning. 

The study also introduces the often-neglected mitigation phase. The review explains the main limits of 

this technology: the data are limited, and the models are still complex and not easy to understand. This 

study is relevant to my dissertation topic because predictive maintenance approaches can be adapted for 

defect detection and problem anticipation in construction. 

 

Table 4 – Case studies for Data Analytics & Communication Tools 

Technology 

 Group 

Refrence 

Digital 

Technology 

tool 

AI implemented 
Application in 

QA/QC 

 

 

Data Analytics 

& 

Communication 

Tools 

(Braun, 2019) – 

BIM 

photogrammetry 

labelling 

Inverse photogrammetry 

+ 4D BIM 

ML dataset 

generation 

Generate 

training data 

(Braun, 2020) – 

BIM and 

machine learning 

for construction 

progress 

SfM + BIM  ML detection Verify progress 

(Serradilla, 2022) 

– DL model 

classification for 

PdM tasks 

including 

anomaly 

detection and 

mitigation 

Predictive maintenance 

platforms 

CNN, RNN, 

LSTM, 

Autoencoders, 

GAN, SOM, 

OC-NN, 

Transfer 

Learning, 

Ensemble 

Learning 

Classification 

and comparison 

of deep learning 

models for 

anomaly 

detection, 

diagnosis, and 

mitigation 

phases of 

QA/QC 

workflows 
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2.3.4. Digital Construction Platforms 

These technologies streamline quality control and optimise resource allocation. BIM enables proactive 

quality management through a 3D collaborative environment, providing early issue resolution, while 

Digital Twin technology enhances predictive maintenance and decision-making by delivering real-time 

virtual replicas of physical assets. 

(Kayhani, McCabe, and Sankaran, 2023) developed an innovative approach to evaluate the quality of 

construction elements in complex building-site environments. The purpose of their study is to overcome 

the limitations of classic methods that directly compare as-designed BIM models with 3D point clouds, 

which are often affected by noise, occlusions, and partial observability of elements. To achieve this, the 

authors implemented BIM-GNN, based on a Graph Neural Network (GNN). The methodology relies on 

three key components: BIM2Graph, which converts the BIM into a graph whose nodes represent objects 

and whose edges represent their topological and spatial relationships; Ifc2vec, which encodes IFC 

classes into vectors to better exploit semantic relationships; and BIM-GNN, which classifies each 

element into one of four quality states: verified, deviated, missing, or no data. The results show a 20–

27% improvement in the weighted F1-score compared to conventional approaches and demonstrate the 

model’s ability to infer the state of partially observed or unobserved elements. Nevertheless, this method 

remains dependent on BIM data quality, requires a minimum amount of labelled data for learning, and 

can lead to confusion between “missing” and “no data” classes. 

(Wei, 2022)’s study presents a deep learning approach implementing image segmentation for the 

automated progress assessment of walls on a whole floor, with direct integration of results into the BIM 

environment. The method was tested on a real case in China, particularly on plastering activities. It 

reached a high segmentation accuracy (mean average precision of 96.8%). With enhancements applied 

to Mask Region-Based Convolutional Neural Network (Mask R-CNN), its performance was compared 

with other models. 

 

Table 5 – Case studies for Digital Construction Platforms 

Technology 

Group 
Reference 

Digital 

Technology tool 
AI implemented 

Application in 

QA/QC 

 

Digital 

Construction 

Platforms 

(Kayhani, 

McCabe, and 

Sankaran, 2023)- 

BIM-GNN QA 

BIM-GNN, BIM2Graph, 

Ifc2vec 
GNN 

Classify element 

quality 

(Wei, 2022) - 

BIM plastering 

progress 

Mask R-CNN + BIM 

integration 
Mask R-CNN 

Track plastering 

progress 
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2.3.5. Real-Time Monitoring & Embedded Systems 

Embedded sensors continuously monitor structural and environmental parameters, enabling automated, 

real-time quality inspections through cloud-based platforms. IT-driven systems facilitate efficient 

information flow and visual management, reducing errors and improving communication among project 

stakeholders. 

For indoor construction progress monitoring, (Ekanayake et al., 2024) focus on automation using the 

instance segmentation framework with deep learning. To detect and quantify the installation progress of 

interior drywalls and interior separations, Mask R-CNN was implemented using construction site 

images. Data was manually labelled for model training. Challenges faced include occlusions and lighting 

variations, which affected the model’s ability to generalise. This study highlights the higher complexity 

of interior spaces compared with exterior ones. 

(Li, J. et al., 2021) propose a computer vision-based productivity evaluation method using CenterNet 

with a DLA-34 backbone to detect workers and materials during rebar assembly. The system enables 

automated productivity estimation without disturbing site construction activities. The approach achieves 

high detection accuracy and shows good consistency with actual site observations. 

(Luo, X. et al., 2018) present a method of activity recognition applied to surveillance video footage to 

generate various and continuous activity labels for each worker appearing in the camera view. The 

approach uses convolutional neural networks to detect activities from spatial and temporal data flows. 

A new fusion strategy is proposed to combine the results from both streams. Experimental results show 

that this method reaches an average accuracy of 80.5%, which is comparable to other activity recognition 

methods in the field of computer vision, despite challenges caused by significant camera motion, low 

video resolution, small differences between activity classes, and high variability within the same class. 

Additionally, the paper demonstrates that this method can support the implementation of efficient and 

objective work sampling. 

Quality control also includes construction progress and quality assessment for specific elements. 

(Trzeciakiewicz et al., 2025), using image-based automation through on-site camera systems, enabled a 

drywall analysis. A deep learning-based segmentation model was applied: a modified Mask R-CNN 

architecture with a ConvNeXt V2 backbone for better feature extraction, additional anchor ratios for 

narrow objects like metal frames, and deconvolution layers for higher-resolution masks (56×56). The 

system enabled the detection and classification of various drywall elements, with an analysis module to 

cluster individual wall segments, estimate camera perspective distortions, and apply corrections. 

Through this system, it was possible to extract information from images for more accurate progress 

tracking and quality assessment on construction sites. However, qualitative evaluation relied on visual 

inspection of segmentation, clustering, and perspective correction on both dataset images and new 

construction site video frames. The study additionally faced the challenge of a limited dataset size (176 

annotated images), which increased the risk of overfitting and poor generalisation. 

Construction automation can also rely on computer vision and deep learning for autonomous pick-and-

place operations and robotic wall construction. For instance, (Vohra et al., 2021) developed a real-time 
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visual perception framework for automating brick wall construction using a robotic system. It detects, 

localises, and estimates the pose of bricks in cluttered environments for autonomous pick-and-place 

operations through Rotating Box CNN combined with a lightweight 6D pose estimation method based 

on point cloud analysis and RANSAC. This enabled end-to-end robotic wall construction without 

manual intervention, focusing on efficiency and precision under limited computational resources. 

 

Table 6 – Case studies for Real-Time Monitoring & Embedded Systems 

Technology 

Group 
Reference 

Digital 

Technology tool 
AI implemented 

Application in 

QA/QC 

 

 

 

 

Real-Time 

Monitoring 

& 

Embedded 

Systems 

(Ekanayake, 

2024) - Indoor 

progress 

Mask R-CNN Mask R-CNN 

Track drywall / 

separation 

installation 

Li 2021 - Rebar 

assembly 

productivity 

CenterNet (DLA-34) CenterNet 
Measure worker 

productivity 

(Luo, 2018) – 

Worker activity 

recognition 

- 
Two-stream 

CNN 

Monitor worker 

activities 

Trzeciakiewicz 

2025 - Drywall 

analysis 

Modified Mask R-CNN + 

ConvNeXt V2 
Mask R-CNN 

Track drywall 

installation 

Vohra 2021 - 

Robotic wall 

construction 

Rotating Box CNN + 6D 

pose estimation 

CNN + point 

cloud 

Automate brick 

placement 

 

Despite the notable progress that QA/QC in construction has witnessed, challenges persist in managing 

quality amid the increasing demand for large-scale projects. AI, now implemented in various fields, is 

envisaged for autonomous inspections that can improve inspection accuracy, streamline workflows, and 

reduce labour and time costs. 

However, common challenges that limit the effectiveness of AI-based QA/QC in construction are 

evident in the reviewed case studies on advanced inspection and tracking systems. These include the 

complexity of certain processes (such as scour prediction), the limitations of traditional models, and the 

need for flexible, accurate systems capable of operating across diverse conditions. Issues related to small 

datasets are observed in UAV-based inspections, along with false detections caused by reflections or 

irrelevant objects, and the requirement for continuous data enrichment to improve generalisation. Indoor 
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progress monitoring also faces challenges due to poor lighting, occlusions, and difficulties in 

generalising models. Worker activity recognition is affected by camera instability, low-resolution 

footage, and the similarity between different actions. Some studies highlight overfitting risks in drywall 

analysis due to a limited number of annotated images, while others point out the need for greater 

computational resources in real-time robotic wall construction. 

These challenges highlight the need for better segmentation techniques, data augmentation, and 

improved model design to increase the accuracy and reliability of AI applications in QA/QC. 
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3. METHODOLOGY: 

This chapter will address two components of the case study. The first concerns the future choice of the 

AI model and therefore will introduce the concepts related to AI. The second will focus on the 

preparation of the dataset, beginning with its origin in a computer vision platform and followed by data 

processing. This part will describe the techniques applied to improve both the visual quality of the 

images and the model’s ability to detect relevant features. 

3.1. Overview of AI, ML, and DL: 

Human approaches or conventional IT programs do not demonstrate realistic efficiency or accuracy in 

analysing large amounts of data or in pattern recognition. AI, in contrast, offers the capacity to process 

massive datasets and recognise patterns through large-scale statistical model building. AI has been 

implemented since the 1940s; however, it is generally defined as the science that develops intelligent 

machines or computer programs capable of mimicking human intelligence (Baduge, S.K. et al., 2022). 

In recent years, AI has made remarkable progress in several domains such as computer vision, robotics, 

autonomous vehicles, language translation, gaming, medical diagnosis, speech recognition, and 

generative design. This progress has largely been achieved thanks to two main technologies: machine 

learning (ML) and deep learning (DL). ML, a subfield of AI, is used to make predictions and learn useful 

patterns or representations from datasets. DL, a subfield of ML, can be defined as a learning technique 

that uses multiple layers of simple and adaptable computing units, commonly known as neural networks. 

With the enhancement of computing power, Convolutional Neural Networks (CNNs)—widely used in 

deep learning—have become one of the most applied techniques in visual object recognition, speech 

recognition, image and speech synthesis, and machine translation. 

Figure 6 illustrates the fields of AI, ML, and DL, as well as widely used algorithms such as MLP (Multi-

Layer Perceptron), GAN (Generative Adversarial Network), CNN, RNN (Recurrent Neural Network), 

LSTM (Long Short-Term Memory Network), and RBFN (Radial Basis Function Network) (Baduge, 

S.K. et al., 2022). 
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Figure 6 – Domains of AI, ML, DL and widely used algorithms. (Baduge, S.K. et al.,2022) 

3.1.1. Neural networks: 

Inspired by the structure and function of the human brain, Artificial Neural Networks (ANNs) are a class 

of machine learning models that have emerged as a family of computational methods. Unlike traditional 

statistical approaches, ANNs are distinguished by their ability to model complex, non-linear 

relationships between inputs and outputs. Conceptually, an ANN can be viewed as a black box with 

multiple inputs and outputs, where information is learned rather than explicitly programmed. 

 

Figure 7 – Neural network as a black box illustrating the non-linear relationship between 

multivariate input variables and multivariate responses (Zupan, 1994) 

The artificial neuron, the basic element of an ANN, is designed to mimic the behaviour of biological 

neurons. To produce an output, each neuron receives multiple inputs, applies weights, sums them, and 

passes the result through an activation (transfer) function. In this analogy, the weights correspond to 

synaptic strengths in biological neurons and represent the knowledge that the network acquires during 

training. 
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Figure 8 – Comparison between the biological and artificial neuron. The circle mimicking the 

neuron’s cell body represents simple mathematical procedure that makes one output signal yj 

from the set input signals represented by the multi-variate vector X. (Zupan, 1994) 

Nevertheless, the weighted sum of inputs is not the sole determinant of a neuron’s output; the activation 

function also plays a crucial role. Through this non-linear transformation, networks gain the flexibility 

to capture complex patterns. Common types of activation functions include: 

- Threshold function – binary output (0 or 1). 

- Sigmoid function – smooth, continuous output between 0 and 1. 

- Radial function – localized activation around a central value. 

 

 

Figure 9 – Common Activation (Transfer) Functions (examples include threshold, sigmoid, and 

radial functions). (Zupan, 1994) 

ANNs are structured in layers: 

- Input layer – receives the raw variables. 

- Hidden layers – intermediate processing units that capture patterns. 

- Output layer – generates predictions or classifications. 

Building on this layered structure, multiple hidden layers can be stacked to model increasingly abstract 

features, forming the foundation of deep learning architectures. 
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Figure 10 – ANN Architectures: Single-Layer vs. Multi-Layer Networks 

(contrasts shallow and deeper ANN structures). (Zupan, 1994) 

 

The ability to learn from data by adjusting weights highlights the power of ANNs. According to (Zupan, 

1994), there are three major learning paradigms: 

- Supervised Learning – Error Backpropagation: 

In supervised learning, an ANN is trained with labelled input–output pairs, and error backpropagation 

is one of the most widely used methods. The term derives from the learning procedure, where the error 

between predicted and target outputs is propagated backwards to update the weights. The weights of 

neurons are first corrected in the output layer, then in the second hidden layer, and finally in the first 

hidden layer. 
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Figure 11 – Order of weight correction in backpropagation. (Zupan, 1994) 

 

- Unsupervised Learning – Kohonen Self-Organizing Maps: 

Unsupervised learning does not require labelled outputs, unlike supervised methods, as it discovers the 

internal structure of the data during the learning process. One well-known example is the Kohonen Self-

Organizing Map (SOM). Although less common in modern deep learning, this method represents an 

important foundation for clustering and visualisation tasks, as it projects high-dimensional data onto a 

two-dimensional grid while preserving topological relationships. 

- Hybrid Models – Counter-Propagation Networks: 

Counter-propagation networks are considered a hybrid method, as they combine Kohonen maps with 

supervised output layers, bridging unsupervised feature mapping with predictive modelling. 

Since their discovery, ANNs have formed the foundation of modern deep learning thanks to their non-

linear structure. Despite limitations such as computationally intensive training and the risk of overfitting 

when data is insufficient, it remains essential to understand these classical principles before exploring 

more advanced architectures. The following section will explain Convolutional Neural Networks 

(CNNs) as an extension of this paradigm, exploiting spatial hierarchies that make them highly effective 

for image analysis. Subsequently, Siamese networks will be introduced as an adaptation of ANNs in 

general, and CNNs in particular, designed for computer vision tasks. 
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3.1.2. Convolutional neural network: 

A Convolutional Neural Network (CNN) is a specialised type of Artificial Neural Network (ANN) 

designed to process grid-structured data, such as images composed of pixels. CNNs are widely used in 

image classification and computer vision. They typically include three types of layers: the convolutional 

layer, the pooling layer, and the fully connected (FC) layer. In conventional CNNs, convolutional layers 

are followed by pooling layers (or additional convolutional layers such as the ReLU layer), with the FC 

layer placed at the end, as illustrated in Figure 13. 

The input layer contains the raw image data. The core building block of the CNN is the convolutional 

layer, which uses filters—called kernels or feature detectors—to extract features. A filter is a 2D array 

of weights smaller than the image size. By sliding the filter across the image, a dot product is calculated 

between pixel values and filter weights, producing an output array. This process, known as convolution, 

generates a feature map (also called an activation map or convolved feature). 

To significantly reduce memory and computation requirements for large inputs such as images, videos, 

and audio, CNNs restrict connections to local receptive fields (Figure 13), unlike traditional neural 

networks (NNs), where all neurons in one layer connect to all neurons in the next (Figure 12). An 

activation function is then applied after convolution, and the depth of the feature map depends on the 

number of filters used. 

 

 

Figure 12 – Schematic of a feedforward neural network and a single neuron. (Baduge, S.K. et 

al.,2022) 

 

The pooling layer is a downsampling operation that reduces the dimensionality of the image by taking 

either the maximum or the average value within a defined region, thereby retaining important features 

while reducing computational complexity. The fully connected layer, positioned at the end of the 

network as shown in Figure 13, contains neurons that are fully connected to the activations of the 

previous layer in order to perform the classification or final task. 
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Figure 13 – Typical architecture of CNN. (Baduge, S.K. et al.,2022) 

The hyperparameters of CNNs that define the architecture of DL algorithms are the filter size, number 

of filters, padding, and strides. A cost function is used to train the model, and through backpropagation 

the filter weights are updated. Different CNN types have been developed by various researchers, 

including the well-known AlexNet, VGGNet, and ResNet. 

 

3.1.3. Siamese adaptation: 

The term Siamese refers to the design of a model with two identical subnetworks. A basic Siamese 

network is composed of two subnetworks—commonly CNNs in computer vision. However, the 

architecture has since evolved, and it can now consist of two or more identical subnetworks with shared 

weights. Figure 14 illustrates the typical network structure of a Siamese network. It is designed to learn 

a similarity function between pairs of inputs. Each branch transforms its input into a feature 

representation, and the similarity between them is measured using a metric such as Euclidean distance 

or cross-correlation. The resulting feature embeddings are compared at the final stage to produce a 

prediction. 

The Siamese network was first proposed in 1993 by Bromley et al. for signature verification. Since then, 

various novel designs of Siamese networks have been introduced. However, significant progress has 

only been achieved in recent years due to the relatively high computational requirements of deep 

learning–based structures. Consequently, further research on Siamese networks has been enabled by 

improvements in computational hardware capability (Li et al., 2022). 
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Figure 14 – Typical network structure of Siamese network (Li, Y., Chen, C.L.P., 2022). 

 

Siamese networks are suitable for several purposes, including object tracking, image matching, re-

identification, change detection, and product recommendations. Building on this idea, a Siamese 

network learns by comparing input instances. This architecture has the potential to explore the feature 

space and obtain discriminative features for downstream tasks. In classification and regression tasks, 

Siamese networks are widely used to learn effective feature representations for decision-making (Li et 

al., 2022). 

For image matching, (Melekhov et al., 2016) define it as a structure consisting of two identical branches 

that share weights and parameters (Figure 16). The main goal is to learn optimal feature representations 

of input pairs, where matched images are pulled closer together and unmatched images are pushed 

farther apart. 

 

        

Figure 15 – Picked positive and negative image pairs of evaluation datasets. (Melekhov et al. 

2016) 
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The images in Figure 15 are partially occluded and captured under varying lighting and weather 

conditions, with differences in viewpoint and appearance. These factors make the generic 

image-matching task more challenging. 

 

 

Figure 16 – Model structure. Proposed network architecture (sHybridNet) for image matching. 

Branches 1 and 2 have the same HybridCNN structure. (Melekhov et al. ,2016) 

On the other hand, (He et al., 2018) emphasise the conceptual role of Siamese networks in real-time 

tracking, noting that these architectures learn a general similarity function between the target patch (the 

object to be tracked) and candidate patches (possible object locations in the next frame). This makes 

them attractive for tracking due to their speed and robustness. Figure 17 shows that the target object is 

consistently followed by the proposed tracker, even under variations in shooting angle and scale, where 

SiamFC fails (adapted from He et al., 2018). 

 

 

Figure 17 – Comparison of tracking results between Ground Truth, SiamFC, and the proposed 

tracker. (He et al., 2018) 
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Figure 18 – Architecture of the proposed twofold SA-Siam network (He et al., 2018). 

 

 

The model combines an appearance network (A-Net) and a semantic network (S-Net), as shown in 

Figure 18. Features are extracted separately and fused during testing, allowing the tracker to integrate 

both semantic and appearance information for improved object tracking. 

 

Finally, (Zhang et al., 2017) adapted this function for structured object tracking. Trackers based on 

Siamese networks select the target from candidate patches using a matching function learned offline on 

image pairs. This matching function is typically implemented by two-branch CNNs with tied 

parameters, which take the image pairs as input and predict their similarity. 

 

 

 

Figure 19 –The pipeline of the StructSiam algorithm. (Zhang et al., 2017) 

 

Figure 19 illustrates that, compared with existing trackers, the results of the StructSiam network 

demonstrate its ability to handle scale variation, occlusion, and appearance changes. The qualitative 

evaluation shows that StructSiam produces more focused and stable target localisation, while bounding 

box comparisons highlight its robustness across challenging video sequences (Zhang et al., 2017). 
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Figure 20 – Qualitative evaluation of the StructSiam algorithm compared with other state-of-

the-art real-time trackers. (Zhang et al., 2017)  

 

Figure 20 shows response maps on different frames (top), illustrating target localisation performance; 

response maps of the global model (right); and bounding box comparisons across seven benchmark 

sequences (bottom). 

 

- Triplet Network: 

 

Beyond the conventional Siamese network, which uses identical branches with shared weights to 

process two inputs, the triplet network represents a more powerful extension designed for metric 

learning. It belongs to the Siamese family but extends the idea to three inputs: an anchor, a positive, and 

a negative. (Hoffer and Ailon, 2015) proposed the triplet network for deep metric learning, where x₁ is 

the anchor input, x₂ is a positive sample, and x₃ is a negative sample (Figure 21). In similarity 

comparison, x₁ and x₂ are from the same category, while x₃ belongs to a different category. By using 

both positive and negative pairs simultaneously during training, the triplet network is able to learn more 

discriminative features. 

The triplet network has been applied in image classification, retrieval, re-identification, and other metric 

learning tasks. Recent studies also suggest its potential for unsupervised extensions, such as temporal or 

spatial proximity. 
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Figure 21 – Triplet network structure of three branches (anchor, positive, negative) feeding into 

distance comparisons, Hoffer and Ailon (2015) 

 

 

Table 7 – Classification accuracy comparison. (Hoffer and Ailon, 2015) 

Dataset TripletNet SiameseNet Best Known Result (with No Data 

augmentation) 

Mnist 99.54±0.08% 97.9±0.1% 99.61% Mairal et al. (2014); Lee et al. (2014) 

Cifar10 87.1% - 90.22% Lee et al. (2014) 

SVHN 95.37% - 98.18% Lee et al. (2014) 

Mnist 99.54±0.08% 97.9±0.1% 99.61% Mairal et al. (2014); Lee et al. (2014) 

STL10 70.67% - 67.9% Lin & Kung (2014) 

 

Table 7 demonstrates that the Triplet Network achieves high classification accuracy across multiple 

datasets, in some cases outperforming or matching the best-known results without data augmentation. 

However, it reports Siamese network results only on MNIST. According to (Hoffer and Ailon, 2015), 

attempts to train Siamese networks on the other datasets did not yield meaningful results, suggesting 

that the context-dependence of the similarity measure in Siamese networks made training unstable. 

These findings highlight the robustness of Triplet embeddings in comparison with Siamese networks, 

which will represent the core of the AI model to be developed in the case study.  
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3.2. Digital tool implementation, OpenSpace AI for Reality Capture in Construction  

3.2.1. Description of the platform: 

OpenSpace AI is an integrated platform that enables comprehensive site capture from every angle, 

creating a shared visual record from pre-construction through operation. It leverages imagery collected 

from drones, 360° cameras, mobile devices, and laser scanners. The platform automatically pins images 

to floor plans, aligns real-world conditions with BIM models, and organizes data by sheets and zones, 

thereby transforming raw imagery into actionable insights for project progress tracking. Its visual 

documentation features allow users to flag changes, monitor QA/QC through field notes, and facilitate 

seamless communication between on-site teams and office-based professionals. 

 

Figure 22 – Example of 360° Reality Capture and Walk Path Using OpenSpace AI 

(openspace.ai) 

 

Figure 23 – Visual Progress Monitoring with Color-Coded Status per Unit (openspace.ai) 
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Figure 24 – Example of Field Notes and Issue Management Interface (openspace.ai) 

 

3.2.1. Implemented Technologies in OpenSpace AI 

This tool relies on computer vision to automatically align images into an integrated scene, identify and 

label key features, and map them onto floor plans, thereby providing a visual understanding of the 

captured environment. It also offers the capability to convert 360° videos into a 3D map by generating 

a point cloud. This process is achieved by detecting common points between images and estimating the 

corresponding camera positions during capture. 

The platform leverages machine learning to enhance the performance of its AI engine. With each 

additional site walk, the model learns from the captured data, enabling faster and more accurate image 

alignment and mapping. Moreover, OpenSpace integrates image-based Simultaneous Localization and 

Mapping (SLAM)—a technique widely used in robotics, drones, and autonomous vehicles—to estimate 

the walker’s path on a floor plan while simultaneously reconstructing the surrounding environment. 

In addition, the system incorporates large language models (LLMs) to interpret and extract insights from 

reality-capture data, thereby improving automation and decision-making capabilities. Overall, the 

platform creates a comprehensive visual record and serves as a centralized source of information, 

allowing field teams to easily view and navigate BIM models on-site. It also provides advanced features 

such as BIM Compare for visual comparisons, Split View for tracking changes over time, and the ability 

to transform captured data into actionable insights. 

3.2.2. Key Functionalities and Benefits of OpenSpace AI in Construction Projects 

This platform provides a wide range of functionalities for different stakeholders in construction 

projects—including contractors, trades, and project owners—with the aim of improving coordination, 

documentation, and project oversight throughout the construction lifecycle. 

First, it enables remote progress tracking by providing images that clearly document what has been 

completed and when. This supports the evaluation of material quantities, percentage of completion, and 
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overall productivity. It also facilitates the annotation of hazards through Field Notes, the generation of 

detailed reports, and the seamless sharing of information across teams. 

Second, the platform enhances (QA/QC) by visually identifying discrepancies before they escalate into 

significant issues, using tools such as BIM Compare. It also supports project management by enabling 

professionals to plan construction activities, monitor progress remotely across multiple projects, and 

reduce the need for frequent site visits, thereby helping mitigate labor shortage risks. 

Finally, the platform simplifies project coordination by keeping all captures, conversations, and project 

activities neatly organized, easily accessible, and securely stored on dedicated servers. It contributes to 

significant cost savings by reducing travel expenses by nearly 50%, minimizing rework through 

improved accuracy, and lowering insurance premiums by up to 25%. These benefits are largely achieved 

through its ability to ensure visual transparency, consistent progress tracking, and reliable 

documentation throughout the project lifecycle. 

 

Figure 25 – Side-by-Side Comparison of Site Reality Capture and BIM Model in OpenSpace 

(openspace.ai) 

 

This platform adds significant value to the digitalization of the construction field by integrating cutting-

edge AI technologies that enhance project management, including site coordination, progress tracking, 

quality assurance and quality control (QA/QC), safety monitoring, and cost reduction. However, the tool 

primarily relies on visual inspection to enable functionalities such as progress monitoring and QA/QC 

verification. In this research, the aim is to explore approaches for automating QA/QC-related tasks in 

order to improve efficiency and accuracy. 

Through its BIM Compare feature, the platform enabled the collection of a dataset composed of site 

images and their corresponding BIM model images. Based on this dataset, and by leveraging an AI-

powered Siamese network, a model will be developed to automate the comparison process, thereby 

reducing dependency on manual visual inspection and improving the overall reliability of quality 

assessment. 
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3.3. Methodology of building the dataset 

To build a consistent and informative dataset for training the Siamese model (Triplet Network), the 

construction site was explored through a 360-degree virtual walk using the OpenSpace AI software. 

Walls were chosen as the primary focus for dataset creation, as they were considered simpler objects for 

testing the network in its initial phase. During the image selection process, several criteria were applied 

to enhance both the visual quality of the images and the model’s ability to detect relevant features. 

- Framing: Images were cropped to retain the most relevant part of the wall, ensuring that 

architectural and MEP elements—such as windows, doors, or pipes—were visible. This allowed 

the model to recognize and differentiate between various features. 

- Angle and Perspective: A consistent perspective was maintained to reduce variation and 

minimize noise in the dataset. Image extraction was therefore based on a single, fixed viewpoint 

for both site images and model images, ensuring comparability. 

- Lighting Control: Lighting conditions were carefully considered. Images with natural or site 

lighting that provided clear visibility were prioritized, while strong shadows and overexposed 

areas were avoided to preserve detail and improve feature recognition. 

- Focus and Sharpness: To facilitate accurate detection, only images of fully completed walls 

were selected, while those under construction were excluded. This improved the model’s ability 

to capture edges, textures, and feature boundaries. 

The image collection process was time-consuming, primarily due to occlusion issues, where objects in 

the foreground blocked relevant background features. On construction sites, occlusion was frequently 

caused by workers, scaffolding, materials, equipment, or temporary lighting. In such cases, image 

capture had to be delayed or adjusted until the obstruction was removed. 

Another challenge arose in very narrow spaces, where it was not always possible to capture images with 

appropriate framing or perspective. Furthermore, the dataset was constrained by the 360-degree virtual 

walk, which did not always cover all the required areas of the site. 

For optimal results, it was essential to anticipate how the model would process the dataset, particularly 

when comparing site images to model images. In this sense, a visually consistent dataset required the 

establishment of clear and coherent selection criteria to ensure quality and comparability. 
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4. CASE STUDIES: 

4.1. Building presentation: 

In compliance with the Non-Disclosure Agreement (NDA), the description of this project includes only 

general information, without disclosing specific names, locations, or areas. The project concerns a data 

center in Europe with a capacity of 12 MW, organized into several functional zones with clearly defined 

circulation routes. 

 

Figure 26 –BIM 3D Model Global View of the Facility 

 

Figure 27 – BIM 3D Model Perspective of Technical and Equipment Areas 
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The ground floor comprises large plant rooms and areas reserved for future expansion, as well as smaller 

office and service blocks. Circulation is structured into main routes, secondary access paths, and 

technical or restricted service zones. 

 

Figure 28 – Ground Floor Plan  

The first floor is designed to accommodate administrative and staff functions. It includes office spaces, 

meeting rooms, a cafeteria, and staff facilities such as restrooms and locker rooms. Circulation is 

organized horizontally to ensure smooth internal movement between areas, while vertical circulation 

provides direct links to the ground floor. Both levels are connected through central circulation routes, 

including stairs, elevators, and corridors. 

 

Figure 29 – First Floor Plan  
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The roof level is dedicated to mechanical and electrical equipment. It includes equipment rooms and 

technical service areas, with restricted access routes designated for inspection and maintenance 

activities. This organization ensures functionality and safety while preventing interference with public 

or administrative functions 

 

Figure 30 – Roof Level Plan  

 

Overall, the building represents a complex, service-intensive facility, where the coexistence of 

architectural, structural, and MEP systems creates a challenging yet highly representative environment 

for dataset collection. It is an under-construction project designed with both architectural spaces and 

extensive technical installations. Architectural features include glazed openings and doorways, which 

are recurrent along the walls. Some areas are wide and open, allowing for straightforward frontal 

viewpoints, while others are narrow corridors or service zones, resulting in restricted perspectives and 

a higher risk of occlusion. The building also incorporates a dense network of MEP systems—such as 

fire protection pipes, ventilation ducts, insulated pipes, cable trays, and radiators—distributed along 

walls, ceilings, and corridors. 
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4.2. Process of building the dataset: 

Taking into consideration the criteria outlined in the methodology chapter for constructing the dataset, 

pairs of site images and their corresponding BIM model views were selected according to several factors, 

including angle and perspective, lighting control, and balanced image composition. The predefined 

camera positions provided by the 360° virtual walk software were used to ensure alignment and 

comparability through a fixed viewpoint. These characteristics also align with the requirements for 

building a dataset intended for training an AI model, where architectures such as ResNet or CNN require 

fixed-size inputs. In addition, walls with varying levels of feature complexity were chosen as the primary 

focus of this dataset. 

The dataset can therefore be classified according to the complexity of wall features, ranging from low-

noise baseline cases to high-complexity environments. This classification aims to cover a wide range of 

construction scenarios and to test the Siamese model’s ability to compare site images with BIM model 

images. The following sections present examples of dataset pairs categorized according to the 

complexity of features in each group 

 

4.2.1. Simpler Walls with Minimal Features: 

At the first level, the image pairs contain simpler features, with only a few elements, such as a radiator 

and a vertical pipe (Figure 31). The viewpoint is primarily frontal, which ensures better comparability 

between the site and model images. In some cases, imperfections are visible in the site images due to 

unfinished elements, such as loose cables (Figure 32). Despite these imperfections, the use of a frontal 

viewpoint and the limited number of elements result in dataset pairs with reduced noise. 

 

    
   

Figure 31 – Site/BIM pair showing a simple wall with radiator and pipe 

    

    Figure 32 – Site/BIM pair of a simple wall with a door opening 
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4.2.2. Architectural Walls with Key Features: 

The selected pairs aim to provide sufficient relevant features for comparison while avoiding 

overcrowding, thereby reducing potential noise. The images were captured at human-eye level, with 

either a frontal or slightly angled perspective of the wall, for both the site image and the BIM model 

(Figure 33). The walls include key architectural and MEP features, such as a door, radiator, window 

opening, and visible cables (Figure 34). 

        

Figure 33 – Site/BIM pair of an architectural wall with door, window, radiator, and pipes 

    
            

Figure 34 – Site/BIM pair of an architectural wall with radiator, pipes, and large glazed 

openings 

     
 

Figure 35 – Site/BIM pair of an architectural wall with a narrow vertical glazed opening 
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4.2.3. Complex Walls with Dense MEP Systems 

Some examples were selected for their higher complexity compared to simpler architectural walls. One 

pair of images (Figure 36), for instance, shows a larger number of MEP elements, such as fire protection 

pipes. The viewpoint remains frontal or slightly angled, allowing proper alignment between the site 

photo and the BIM model. This pair is particularly rich in elements, including pipes, valves, fixtures, 

and their associated materials and colors. Although such complexity increases the risk of dataset noise, 

these examples were intentionally included because they provide valuable training material to evaluate 

how effectively the model can learn to detect and differentiate overlapping and occluded systems. 

 

      
 

Figure 36 – Site/BIM pair of walls with dense MEP systems (fire protection pipes and valves) 

There are also attempts to integrate ceiling-level MEP elements without altering the primary reference 

of the dataset, which remains focused on walls. While the viewpoint is still frontal (Figure 37), it extends 

upward to include components such as ducts and pipes. By incorporating these perspectives, the dataset 

is enriched and the model’s capacity is expanded to learn more about MEP elements. Although these 

components belong to ceiling zones, they remain visually and functionally integrated with the walls. 

 

      
 

Figure 37 – Site/BIM pair of a wall integrating ceiling-level MEP elements (ducts and pipes) 
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4.2.4. Structural-Focused Walls 

Some image pairs are more structurally focused compared to architectural walls, simple walls, or MEP-

dense walls. As in most cases, the viewpoint is frontal or slightly angled. These pairs (Figures 38 and 

39) emphasize steel structural elements such as vertical columns, diagonal bracing, and overhead ducts. 

While the site images display real textures and materials, the BIM models represent them with clean 

surfaces and colored geometries. Although these examples are less cluttered than MEP-heavy pairs, they 

still provide important structural information that enriches the dataset. 

 

 

   
 

Figure 38 – Site/BIM pair of a wall with exposed structural elements (steel columns, diagonal 

bracing, and overhead ducts) 

   
Figure 39 – Site/BIM pair of a wall with exposed structural frame (steel columns and diagonal 

bracing) 
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4.2.5. Special Viewpoints and Spatial Constraints 

Unlike the frontal viewpoints of previous examples, this pair adopts a central “direction of view” 

perspective. The images (Figures 40 and 41) combine architectural constraints—such as the corridor’s 

narrowness and door opening—with technical systems including vertical supports and suspended trays 

or cable racks. 

As in previous cases, the site image appears more cluttered, whereas the BIM model simplifies these 

elements and provides greater clarity in the spatial arrangement. Such pairs with alternative viewpoints 

are an important addition to the dataset, as they test the model’s ability to handle restricted perspectives 

and denser vertical elements, despite the increased risk of occlusion. 

 

 

    
 

Figure 40 – Site/BIM pair of a narrow corridor with vertical supports, suspended trays, and 

doorway 

    

    
 

Figure 41 – Site/BIM pair of a wall with constrained spatial perspective with structural and 

MEP integration 
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4.3. Siamese model workflow: 

This Siamese model is designed to learn visual similarity by training on triplets of images: an anchor 

(the site image), a positive (the corresponding BIM model image), and a negative (generated by shuffling 

site and BIM model images). 

The workflow begins with setting up the necessary libraries and preparing the dataset. Images are resized 

to 200 × 200 pixels and transformed into tensors to make them readable by machine-learning algorithms. 

The model then ensures the correct pairing of anchor, positive, and negative images, and visualises 

sample triplets. 

Using a CNN-based embedding model, each image is converted into a vector representation, enabling 

the Siamese network to measure similarity. The differences between embeddings are computed and used 

to train the model. Training relies on a triplet loss function that encourages the network to bring similar 

images closer together while pushing dissimilar ones further apart. 

The training process uses batching (processing subsets of images) and epochs (full passes over the 

dataset). Both training and validation loss are monitored to evaluate learning performance and detect 

possible overfitting. The following section will explain the detailed structure step by step and will be 

summarised in Figure 47. 

 

4.3.1. Setup: 

As a first step, the environment was set up by importing the required libraries and defining the target 

image size. This step is essential for convolutional models, which require uniform input dimensions. 

Libraries such as matplotlib.pyplot were imported for plotting images and graphs and used here to 

display image samples. NumPy handled numerical operations and array manipulation, while os and 

random supported file and data management. The deep learning framework TensorFlow was 

implemented as the main library to build and train the model. Path from pathlib ensured clear and 

consistent file path handling. Several Keras modules were also imported: applications for pre-trained 

models and architectures, layers for building network components (e.g., Conv2D, Dense), losses for 

built-in loss functions, ops for backend tensor operations, optimizers (e.g., Adam, SGD) for updating 

model weights, metrics for performance tracking, Model as the base class for creating custom models, 

and resnet for implementing the ResNet architecture from Keras Applications. Finally, a fixed input size 

of 200 × 200 pixels was defined, to which all images were resized. 

4.3.2. Load Data set: 

Loading the dataset consists of mounting Google Drive and downloading ZIP files using gdown, a 

command-line tool suitable for the Colab environment. The dataset files include left.zip for anchor 

images and right.zip for positive images. To allow direct access to these files (images in this case), the 

process begins by importing the necessary module to interact with Google Drive and mounting it at the 

appropriate path (/content/drive), with Path from pathlib ensuring clean path handling. This process 

results in organized image pairs ready for model training. 
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4.3.3. Preparing the Data: 

This part of the model defines the preprocessing pipeline for images used in the Siamese network. 

Through a sequence of functions, the model: 

preprocess_image function: Reads an image file, decodes it, normalizes the pixel values, and resizes it 

to 200×200 pixels. 

preprocess_triplets function : Ensures that all inputs are in a consistent format before being passed to 

the model. An image tensor represents image data (pixels) as numbers that a machine learning model 

can process. This function takes the file paths of an anchor, a positive, and a negative image, and returns 

their corresponding preprocessed image tensors. 

Dataset preparation : The model loads and sorts anchor and positive image paths to ensure correct pairing 

(anchors and corresponding positive images are stored in Drive folders with the same names). It then 

shuffles and combines these lists to create negative samples. 

Visualization step : As a final part of data preparation, a function displays three triplets in a 3×3 grid, 

each consisting of an anchor image, a similar (positive) image, and a different (negative) image. This 

allows verification that image pairs are correctly aligned and labeled before training the model (Figure 

42). 

      

Figure 42 – Example of displaying three triplets in a 3×3 grid: the anchor image on the left, a 

similar (positive) image in the middle, and a different (negative) image on the right. 
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4.3.4. Building the model: 

The model converts each image into a vector representation for similarity comparison within the 

Siamese network. A pre-trained ResNet50, already trained on a large dataset, is used to extract useful 

features from the images. The embedding model incorporates custom dense layers that generate a 256-

dimensional embedding vector. To improve training efficiency and reduce the risk of overfitting, only 

the deeper layers of ResNet (starting from conv5_block1_out) are made trainable, while the earlier layers 

remain frozen. This setup transforms images into a numerical form for similarity checking, optimising 

both training speed and accuracy. 

 

The Siamese model is implemented as a custom Keras model that manages both training and evaluation 

using triplet loss. It is built by defining three input images—anchor, positive, and negative—and passing 

them through the shared embedding model. A custom DistanceLayer then calculates the squared 

distances between the anchor–positive and anchor–negative embeddings. By applying a margin-based 

triplet loss, the model ensures that similar images are positioned closer together in the embedding space 

than dissimilar ones. Custom training and testing steps are also included to manually compute gradients 

and update the model’s weights during training. 

 

L(A, P, N) = max(‖f(A) - f(P)‖² - ‖f(A) - f(N)‖² + margin, 0)1 

 

 

 
 

 

Figure 43 –Architecture of the Siamese Network with Triplet Loss 

  

 

1 (Schroff, F et al, 2015) 
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4.3.5. Training the model: 

Using the prepared triplet dataset, the model is trained for 10 epochs. Validation data is used to monitor 

performance and mitigate the risk of overfitting. To verify that the data is correctly structured, the model 

also visualises anchor, positive, and negative images by retrieving a sample batch of triplets from the 

training set. This visualisation step is essential before relying on the training results, as it confirms that 

the images are properly aligned and accurately labelled. 

 

Figure 44– Example of Training and validation loss outputs of the model  

 

Figure 45 – Sample batch of triplets from the training  
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4.3.6. Triplet Loss and Accuracy: Evaluating Similarity in Siamese Networks 

After training, model performance is evaluated using a metric called triplet accuracy, which 

reflects how often this condition is satisfied: 

Accuracy = Total number of predictions / Number of correct predictions 

In this context, a prediction is considered correct if the model ranks the positive image as more 

similar to the anchor than the negative image, according to the distances between their 

embeddings. This aligns with the standard definition of accuracy used in classification tasks, 

but here it is applied to similarity ranking rather than label prediction. 

By computing both the loss during training and the accuracy on validation data, we can observe 

how well the model generalizes to unseen image pairs. This dual evaluation — using distance-

based loss and ranking-based accuracy — provides a complete picture of the Siamese model's 

ability to distinguish visual similarity. 

 

Figure 46–Accuracy outputs of the model  
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Figure 47– Workflow of Siamese Network Training with Triplet Loss 
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4.4. Results of Siamese algorithm: 

The model is first trained on a dataset of 50 triplets of images, consisting of 50 anchors (site 

images), 50 positive images (BIM model), and 50 shuffled anchor images used as negatives. 

Training is performed for 10 epochs, during which both training loss and validation loss are 

recorded. A sample batch of triplets from the training set is also retrieved for visualisation to 

confirm correct alignment and labelling. 

Both training and validation loss are monitored to evaluate learning performance and to detect 

possible overfitting. Following this procedure, the model is trained a second time after 

increasing the dataset to 100 triplets. 

This section presents and discusses the results of training and validation loss for both runs 

(before and after increasing the dataset), followed by an analysis of the accuracy results 

obtained. 

 

4.4.1. Training and validation loss of the model 

Dataset of 50 triplets of images: 

Table 8 – Training and validation loss of the model before increasing the dataset 

Epoch Training loss Validation loss 

Epoch 1/10 0.7447 0.4439 

Epoch 2/10 0.8525 0.3218 

Epoch 3/10 0.3256 0.358 

Epoch 4/10 0.325 0.1825 

Epoch 5/10 0.198 0.0418 

Epoch 6/10 0.2494 0.2508 

Epoch 7/10 0.1566 0.0523 

Epoch 8/10 0.0849 0.0529 

Epoch 9/10 0.0906 0.1311 

Epoch 10/10 0.2446 0.0667 
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Figure 48 – Graph of training loss and validation loss over the 10 Epochs (before increasing the 

dataset) 

- The training loss starts at approximately 0.75, peaks at epoch 2 with a value of ~0.85, and then 

decreases sharply to ~0.3 by epoch 3. This early fluctuation suggests some instability in the 

training process. 

- After epoch 3, the training loss decreases smoothly, stabilising between 0.1–0.2, with a slight 

increase observed at epoch 10. 

- In contrast, the validation loss begins at ~0.45 and decreases steadily, approaching zero by 

epoch 5. However, at epoch 6, a noticeable spike occurs, indicating fluctuations in validation 

behaviour. 

- This inconsistency in the validation curve suggests that the model has not yet achieved a stable 

or fully generalisable representation. 

- Since the training loss continues to decline while the validation loss occasionally spikes, there 

remains a significant risk of overfitting. 

Overall, the model demonstrates rapid learning but unstable validation performance, strongly suggesting 

that the small dataset size is a limiting factor. To address this, the model was subsequently trained on an 

expanded dataset of 100 triplets. 
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Figure 49 – sample batch of triplets from the training set before increasing the dataset 

Dataset of 100 triplets of images: 

 

Table 9 – Training and validation loss of the model after increasing the dataset 

Epoch Training loss Validation loss 

Epoch 1/10 0.6853 0.4264 

Epoch 2/10 0.4675 0.2609 

Epoch 3/10 0.3274 0.1191 

Epoch 4/10 0.1615 0.1135 

Epoch 5/10 0.1293 0.1507 

Epoch 6/10 0.1162 0.0517 

Epoch 7/10 0.1308 0.1346 

Epoch 8/10 0.1320 0.2421 
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Epoch 9/10 0.0309 0.0436 

Epoch 10/10 0.0583 0.0297 

 

 
Figure 50– Graph of training loss and validation loss over the 10 Epochs (after increasing the 

dataset) 

 

As a general observation of this graph, it is encouraging that both the training loss and validation loss 

decrease sharply during the first few epochs, indicating that the model learns quickly at the start: 

- Between epoch 1 and epoch 4, both training and validation loss drop significantly, suggesting 

that the model is rapidly learning to distinguish between image pairs. 

- Some instability is noticeable in the validation set after epoch 4, particularly with the spike at 

epoch 8. Possible causes include the small size of the validation set, noisy data, or a slightly 

high learning rate. 

- By epoch 10, both losses are again very low (training loss ≈ 0.058, validation loss ≈ 0.030), 

indicating that the model has fit the data well without clear signs of overfitting. 

- Typically, overfitting occurs when training loss decreases while validation loss increases. In 

this case, both losses follow the same trend, suggesting that the model is generalizable. 

 

In summary, the model shows rapid convergence in the early epochs (1–4), a fluctuation in validation 

loss at epoch 8, and low final loss values by epoch 10. These results indicate that the model is likely 

generalisable, with no strong evidence of overfitting. 

 



AI for QA/QC in construction. A Siamese Network with Triplet Loss 

 

European Master in Building Information Modelling BIM A+ 54 

 

Figure 51 – sample batch of triplets from the training set after increasing the dataset 

 

 

4.4.2. Accuracy Evaluation: 

Triplet accuracy measures how often the model makes a correct prediction of the following condition: 

distance (anchor,positive) < distance (anchor, negative) 

This means that triplet accuracy represents the percentage of cases where the model successfully learns 

to bring similar images closer together and push different images farther apart. 

 

The following section presents the triplet accuracy results and their interpretation. 
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a. Dataset of 50 triplets of images: 

 

 

Figure 52–Triplet Accuracy Evaluation 

 

The observed results show a train accuracy of 1.0 (100%) but a validation accuracy of 0.8 (80%). 

The value of training accuracy suggests that the model has essentially memorized the training triplets. 

However, the gap with the validation accuracy indicates that the model learned the training examples 

perfectly, but doesn’t generalize equally well to unseen validation triplets. 

This gap might be a reason of the small dataset, which could lead to a small validation set that is not 

fully representative. 

As a conclusion, with this dataset, the training accuracy reached 100% which suggests that the model 

memorized the small training dataset. However, the validation accuracy drops to 80%. This gap might 

highlight overfitting and limited generalization capacity due to the small dataset size. 
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b. Dataset of 100 triplets of images: 

 
Figure 53– Model evaluation of Triplet Accuracy 

 

 

 
 

Figure 54–Triplet Accuracy Evaluation 

 

 

Triplet accuracy measures how often the model correctly ranks the anchor–positive pair as closer than 

the anchor–negative pair. 

The results show: 

- Training Accuracy ≈ 97.5%  On the training data meaning that 97.5% of triplets were ranked 

correctly. 

- Validation Accuracy ≈ 90%  On validation data (unseen during training) meaning that 90% of 

triplets were ranked correctly. 

 

These values indicate that the model has learned the similarity function effectively, achieving high 

accuracy. The slight drop from training to validation accuracy is normal and even desirable, as it 

suggests that the model generalizes reasonably well to new, unseen data. 
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5. CONCLUSIONS 

The aim of this work was to contribute to the digitalization of QA/QC in construction through the 

implementation of an AI-driven solution. The study pursued three main objectives: first, to conduct a 

literature review on the current state of digital technologies and AI applications in QA/QC; second, to 

develop a methodology for applying AI to QA/QC, with particular focus on the triplet network within 

the Siamese architecture; and third, to test this methodology in a case study by training the Siamese 

model on a real dataset of as-built site imagery and as-designed BIM model imagery, followed by an 

analysis of the results and an evaluation of its performance. 

The literature review has described the limitations of traditional methods in QA/QC, explaining that 

they are costly, time-consuming, and insufficient for modern complex projects. It then emphasised how 

advanced digital technologies improve inspection accuracy and efficiency, while also outlining their 

current limitations, suggesting that more precise practical applications of these technologies could make 

QA/QC more data-driven and efficient. 

This part of the research highlighted how AI-driven solutions, particularly deep learning, can add 

automation, efficiency, and accuracy to QA/QC, especially in defect detection, safety monitoring, and 

predictive quality control. It also underlined existing research gaps consisting of dataset limitations, 

integration problems, false positives, computational constraints, and generalisation issues across studies. 

Finally, this review enriched the discussion by presenting case studies of AI-driven technologies for 

QA/QC, classifying them into technology groups such as Additive Manufacturing & Material 

Assessment, Advanced Inspection & Tracking, Data Analytics & Communication Tools, Digital 

Construction Platforms, and Real-Time Monitoring & Embedded Systems. 

Following the literature review, this work developed a methodology aimed at implementing an AI-

driven solution for a quality control task, specifically comparing as-built with as-designed data. To 

prepare for the application of the AI-driven solution, this chapter first introduced the concepts of AI, 

beginning with a general description and then branching into Machine Learning (ML) and Deep 

Learning (DL). 

This explanation established the foundation for Artificial Neural Networks (ANNs) as the basis of 

modern DL, before moving on to Convolutional Neural Networks (CNNs). The methodology then 

detailed the Siamese network, which uses CNNs as subnetworks, and concluded with the triplet network, 

a variant of the Siamese family that represents the core of the AI model developed in this study. 

Additionally, the methodology introduced the digital tool implemented for this case study: a platform 

that combines reality capture (360° imagery, drone data) with AI-driven spatial computing. The BIM 

comparison feature of this tool enabled the preparation of a dataset. The methodology also described the 

image selection process, focusing on walls, addressing challenges such as occlusions and perspective 

limitations, and applying techniques such as lighting control and framing. 
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The case study chapter presented the practical part of this work. It began by describing the large-scale 

data center project, which included architectural, structural, and MEP systems—an environment that is 

both complex and representative for dataset collection. 

Pairs of site images and corresponding BIM model views were selected according to criteria such as 

angle, perspective, lighting control, and balanced image composition. These pairs were used to build a 

dataset for training the model. 

The Siamese model workflow was explained step by step: setting up the libraries, resizing and 

preprocessing the data, preparing triplets, creating an embedding model, and applying the triplet loss 

function. The model was trained first on a small dataset, then retrained on a larger one, with both training 

and validation losses monitored. 

The results of implementing the Siamese network with triplet loss were promising. The model learned 

to bring similar site images and BIM images closer together while pushing dissimilar ones farther apart. 

Despite the limited dataset, the model showed rapid learning, a decreasing loss trend, and no clear signs 

of overfitting. 

It can therefore be said that the model successfully automated the task of visual similarity checking, 

demonstrating the feasibility of comparing as-built images with as-designed BIM references. This 

supports automation in QA/QC, allowing non-compliant or defective elements to be flagged early, 

reducing human error, and ensuring more consistent inspections. 

This study focused on one project element—the wall—although some MEP components were included. 

A larger scope would require datasets covering other elements, such as ceilings and structural systems. 

For instance, in data centers, dense ceiling-level MEP installations (ducts, pipes, trays) would need their 

own dedicated datasets to achieve reliable automation. 

Another limitation was dataset size and precision. Time constraints limited the dataset preparation, 

which impacted the model’s generalisation. Small datasets also increased the risk of overfitting and 

unstable validation performance. 

Several extensions of this research are possible. 

- Expanded Datasets: Building larger, more precise datasets for different elements (e.g., ceilings, 

ducts, or structural frames) would improve generalisation. 

- Change Detection Methods: Inspired by other fields, such as Wu et al. (2018) in book cover 

comparison, change detection could be applied in construction to detect discrepancies between 

BIM models and site images more efficiently. 

- Enhanced AI Architectures: Exploring other architectures, such as transformers or self-

supervised learning methods, could strengthen performance when labeled datasets are limited. 

- Practical Integration: Future studies should focus on integrating such models directly into 

construction workflows, ensuring that visual inspections, BIM comparisons, and defect 

detections are part of daily site operations. 
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This dissertation shows that AI-driven approaches—specifically Siamese networks with triplet loss—

can play a meaningful role in advancing the digitalization of QA/QC in construction. While the scope 

of the study was limited, the findings highlight the potential of combining BIM, computer vision, and 

deep learning to improve inspection accuracy, reduce costs, and enhance efficiency. With further 

development and larger datasets, this approach could contribute significantly to the future of automated 

quality control in construction projects. 
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