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RESUMO

Titulo traduzido: Exploracdo de Modelos Baseados em Agentes para o Planeamento da Construcéao
Usando Modelos Parciais 4D de BIM

A industria da construcdo continua a enfrentar desafios relacionados com riscos de seguranca espacial,
em particular em contextos onde pavimentos, barreiras e transiches estruturais permanecem
incompletos. Embora o Building Information Modelling (BIM) ofereca uma base digital para a
coordenacdo espacial, frequentemente carece de inteligéncia incorporada capaz de identificar
autonomamente condic¢des perigosas em obra. Esta dissertacdo explora a integracdo do reinforcement
learning (RL) com modelos parciais de 4D BIM num ambiente de motor de jogo, de forma a simular
um agente inteligente capaz de navegar, perceber e interagir autonomamente com elementos espaciais
perigosos.

Foi desenvolvido um ambiente de simulacdo personalizado utilizando o Godot Engine, no qual foi
importada geometria parcialmente construida derivada de modelos BIM. O ambiente apresenta
condicdes de risco frequentemente associadas a acidentes por queda, tais como beirais abertos, vazios e
caixas de escadas. Um agente Unico foi treinado através do Proximal Policy Optimization (PPO), com
percecdo baseada em sensores e uma funcéo de recompensa concebida para promover a interagdo com
transicBes inseguras. Ao contrario de estruturas convencionais baseadas na sobrevivéncia, este projeto
inverteu a légica: a queda foi recompensada e ndo penalizada, incentivando o agente a simular um
comportamento de procura de perigos em vez de evitamento. A simulacgdo teve como objetivo explorar
a viabilidade de utilizacdo de agentes RL como inspetores digitais de seguranca capazes de identificar
elementos inseguros sem recurso a etiquetagem semantica prévia. As expectativas principais incluiram
a navegacao entre multiplos pisos, uma exploracao espacial diversificada e a aprendizagem de politicas
orientadas para riscos. Os resultados indicaram que, apds o treino, 0 agente conseguiu aprender a
atravessar geometria complexa e a interagir repetidamente com perigos ndo etiquetados utilizando
apenas entradas de sensores de baixo nivel e feedback ambiental.

Esta investigacao oferece uma nova perspetiva sobre a aplicacdo do reinforcement learning na simulacéo
de seguranca em construcdo, reposicionando os agentes de executores de tarefas para exploradores
diagnésticos. Destaca ainda o potencial da combinagdo entre BIM e sistemas de agentes inteligentes
para apoiar 0 planeamento proativo da seguranga em ambientes digitais de construcao.

Palavras chave: Building Information Modelling (BIM), Dete¢do de Perigos, Motores de Jogo,
Planeamento da Construcéo, Reinforcement Learning
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ABSTRACT

The construction industry continues to grapple with spatial safety risks, particularly where floors, barrier
and structural transitions remain incomplete. While Building Information Modelling (BIM) offers a
digital foundation for spatial coordination, it often lacks embedded intelligence capable of autonomously
identifying hazardous site conditions. This dissertation explores the integration of reinforcement
learning (RL) with partial 4D BIM models in a game engine environment to simulate an intelligent agent
capable of autonomously navigating, perceiving and interacting with hazardous spatial features.

A custom simulation environment was developed using the Godot Engine, into which partially
constructed BIM-derived geometry was imported. The environment features hazardous conditions often
associated with fall-related accidents such as open ledges, open voids and stairwells. A single agent was
trained using Proximal Policy Optimization (PPO), with sensor-based perception and a reward function
designed to promote interaction with unsafe transitions. Departing from conventional survival-based
frameworks, this project inverted the logic: falling was rewarded and not penalised which encouraged
the agent to simulate hazard-seeking rather than avoidance. The simulation aimed to explore the
feasibility of using RL agents as digital safety inspectors capable of identifying unsafe features without
prior semantic tagging. Key expectations included multi-floor navigation, spatially diverse exploration
and hazard-focused policy learning. Results indicated that, after training, the agent could learn to to
traverse complex geometry and repeatedly interact with unlabelled hazard using only low-level sensor
input and environmental feedback.

This research offers a novel framing of reinforcement learning in construction safety simulation,
repositioning agents from task-executors to diagnostic explorers. It highlights the potential of combining
BIM and intelligent agent systems to support proactive safety planning in digital construction
environments.

Keywords: Building Information Modelling (BIM), Game Engines, Hazard Detection, Reinforcement
Learning, Safety Planning
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1. INTRODUCTION

According to the International Labour Organization (ILO, 2023), more than 20% of occupational
fatalities worldwide are construction-related. The construction industry remains one of the most
hazardous sectors globally, as workers are frequently exposed to dynamic site conditions, heights and
heavy machinery. Despite notable advancements in legislations and safety management systems, the
early detection and mitigation of hazards during the project planning stages continue to be a persistent
challenge (Hinze, 2006; Guo et al., 2020).

The ongoing digital transformation within the construction industry has positioned Building Information
Modelling (BIM) as a cornerstone technology. This is due to its ability to provide a digital representation
of built assets that is data-rich and in turn supporting the integration of scheduling, cost, and performance
data throughout the asset lifecycle (Eastman et al., 2011; Bryde et al., 2013). Its application during
design and planning stages has led to improvements in coordination, clash detection and construction
logistics. Importantly, BIM has also opened new avenues for embedding safety considerations earlier in
the project timeline, particularly through 4D BIM, which links model elements to time-based
construction sequences (Wang, Chong and Zhang, 2016).

To fully appreciative the level of potential of BIM in regard to safety planning, it is prudent to first
reflect on the practices that were previously undertaken. Traditionally, safety planning was
predominantly based on reactive pre-planned practices and reliance on static checklists that were subject
to human interpretation and experience (Zhou et al., 2012; Chi et al., 2014). As Hinze (2006) notes,
traditional safety management lacked the spatial and temporal awareness needed for proactive hazard
identification, especially in dynamic, multi-phase projects. BIM offers new opportunities to embed
safety planning into the digital design process (Zhang et al., 2013; Kim et al., 2013). The visualisation
of structural and temporal data allows for earlier identification of spatial conflicts and risk-prone
activities. Safety-related elements such as scaffolding, guardrails, and restricted access zones can be
visualised, validated, and updated in near-real-time.

However, many current practices are limited to static safety checks or compliance-driven rule
applications. For example, in platforms such as Navisworks or Solibri, fall protection assessments may
be semi-automated by predefined scripts that detect missing edge barriers or unsafe working platforms
(Zhou et al., 2012; Dirgen Tozer et al., 2024). Consequently, despite their usefulness, these applications
provide limited insight on how risks evolve over time or their response to environmental changes.
Hazards such as temporary voids, partial staircases or incomplete access paths may go undetected until
construction is already in progress (Amer et al., 2023).

Prior research has explored the application of BIM for automated identification of hazards. For instance,
a system was developed for the detection of fall risks and unsafe zones by Zhang et al. (2013) and Kim
and Chi (2019). While it proved effective in the visualization of hazards, the systems fell short in the
ability to model adaptive worker behaviours simulation or emergent risks. Agent-Based Modelling
(ABM), which offers decentralized simulations of worker-environment interactions (Bonabeau, 2002;
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Lu & Olofsson, 2014), addresses some of the limitations but due to its assumption of deterministic
behaviours, limits realism. Reinforcement Learning (RL), a subfield of artificial intelligence, address
the limitations mentioned above by allowing agents to learn optimal behaviours through interaction with
the environment and guided by a system of rewards and penalties (Sutton and Barto, 2018). In the
construction context, Guan et al. (2021) and Lee et al. (2022) applied the navigation aspect in the BIM
environments, but the implementation still remained isolated and rarely integrated fully with broader
BIM workflows and evolving site conditions. Applications that train agents to explore environments in
a bid to proactively seek, identify and interact with hazards remain scarce. Game engines such as Unity,
Unreal Engine or Godot, enable for simulations that integrate RL with ABM and BIM presenting a
potential for the development of intelligent and safety-aware simulations. These platforms provide real-
time physics simulation, 3D rendering and programmable agent control. These factors make them ideal
for the testing and visualization of agent behaviour in dynamic environments (Alves and Junior, 2020;
Fang et al., 2020). Afsari, Eastman and Shelden (2021) highlight the unique value of game engines in
the conversion of static BIM models into interactive digital environments that support behavioural
learning and hazard visualization.

This dissertation proposes for the integration of BIM and RL within a game-engine environment to
simulate proactive, behaviour-driven safety assessment in construction. Godot was chosen for this
research and was used to host a virtual construction environment derived from a partial 4D BIM model
enabling for the training of a reinforcement learning agent in the exploration, identification and logging
of unsafe conditions as they emerged.

To date, a unified framework that combines Building Information Modelling (BIM), Reinforcement
Learning (RL) and game engine-based simulation for proactive safety assessment in evolving
construction environments remains unexplored in both academic and practical domains. This study aims
to address the gap by assimilating these methods into a single simulation framework that moves beyond
static assessments toward dynamic, behaviour-driven safety planning.

The proposed framework is not limited to navigational pathfinding but is designed to enable proactive
hazard discovery. It seeks to simulate how intelligent agents that are trained via reinforcement learning,
interact with incomplete and hazardous spatial conditions in construction environments derived from
partial 4D BIM models. The ultimate intention is to identify how such agents can be used to detect high-
risk areas, including unguarded edges, incomplete floor slabs and unprotected voids, thereby supporting
stakeholders during early-stage safety reviews and design decision-making. Unlike conventional
training approaches, where agents are programmed to avoid danger, the agent in this study is
intentionally trained to seek out and engage with unsafe conditions. This offers a novel lens through
which to simulate inspection behaviour and enhance planning foresight.

For the achievement of the research aim above, the objectives identified are as:

e To critically review the current state of BIM, RL and simulation technologies in relation to
simulation of construction planning and safety so as to identify gaps in addressing safety
scenarios.
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e To develop a technical workflow for the translation of BIM-derived spatial data into a game
engine-based environment that has the capability of supporting autonomous agent interaction
and hazard simulation.

e Toimplement an autonomous agent capable of learning safety-aware navigation policies within
a partially constructed 4D BIM environment, including the ability to identify and log hazardous
conditions.

e To evaluate the performance of the RL agent in the risks identification, measuring hazard
detection accuracy, adaptability, and comparative safety outcomes.

e To assess the framework's implications for proactive planning, hazard mitigation, and early
design decision-making in real-world projects.

This study explores the integration of Building Information Modelling (BIM), reinforcement learning
(RL) and game engine-based environments within a unified simulation framework in a bid to simulate
behaviours related to safety in a 4D environment that is partially constructed. The simulation focuses on
the early to mid-stage structural construction where significant fall hazards caused by temporary
conditions such as open ledges, incomplete floors and stair voids, are most prominent.

The virtual environment will be based on simplified yet representative construction scenarios derived
from imported BIM data and implemented in the Godot game engine. The reinforcement learning agent
shall be trained to navigate these evolving spaces and identify unsafe features and while also using
staircases for vertical movement. However, while stair structures are present, this work does not
guarantee specific behaviours related to stairs (e.g., falling down a stairwell) unless explicitly
demonstrated in the results section.

Significantly, this research is positioned as a proof of concept. Its main objective is to demonstrate the
feasibility and usefulness in the transformation of BIM models into playable, learnable simulations for
proactive safety assessments. Therefore, the focus is not on the refinement or optimization of the RL
agent’s learning parameters. Instead, rather than focusing on the agent’s training efficiency, default RL
configurations are engaged and the agent’s behaviour is evaluated based on its interaction with the
environment.

Despite the proposed approach introducing a novel integration and modelling of behaviour, it is subject
to several limitations. Due to the fact that the environment is a mere abstract, the simulation may not
capture the complete spatial and operative complexity of real life active construction site. Limitations
may stem from hardware and time, restricting the true scale of depth of RL agent training. Behavioural
realism is limited as the validation of the agent behaviour occurs through simulated performance metrics
and not through direct comparison with human site data. Additionally, the framework is primarily
centered on fall-related hazards, excluding other risk categories such as equipment, collisions or
handling of material. Finally, as with many efforts involving BIM, Interoperability remains a challenge
due to the need for data translation between modelling platforms and simulation engines.

This dissertation is structured across five main chapters, each addressing a distinct stage of the research
process while collectively advancing the goal of simulating hazard-seeking agents in partially
constructed BIM-derived environments.
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Chapter 1 establishes the context, rationale and scope of the study. It introduces the research problem,
objectives and key contributions, situating the investigation within the domains of construction safety,
digital modelling and reinforcement learning.

Chapter 2 provides a critical review of existing literature on Building Information Modelling (BIM),
4D simulation and reinforcement learning applications as well as game engines in safety-related
environments. It identifies knowledge gaps and conceptual foundations that support the formulation of
this research.

Chapter 3 details the procedural steps taken to implement the simulation environment. It covers BIM
model preparation, Godot engine setup, agent control configuration and training routines. The
methodology is structured to ensure reproducibility and to reflect a clear alignment between design
intent and technical execution.

Chapter 4 presents the outcomes of the trained agent’s behaviour, comparing actual simulation
performance against the expectations set out in earlier chapters and existing practices. It evaluates the
emergence of hazard-seeking behaviour, navigation patterns and simulation validity. This chapter also
discusses observed limitations and offers recommendations for improving safety simulations.

Chapter 5 offers a reflection on the research journey, summarising the methodological contributions
and core findings. It considers the implications of using reinforcement learning within digital
construction models and outlines future opportunities for enhancing proactive safety planning using
intelligent agents.

Joint Master Degree Programme
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2. LITERATURE REVIEW

Building on the rationale established in the preceding chapter, this literature review critically examines
the current body of research at the intersection of Building Information Modelling (BIM),
Reinforcement Learning (RL), and game engine simulation in the context of construction safety. The
aim is to explore how these technologies have been applied individually or in combination, to model,
simulate, or enhance safety assessment in construction environments. Particular attention is paid to their
methodological strengths and limitations, as well as to the key research gaps that persist in the simulation
of adaptive safety behaviours.

While Agent-Based Modelling (ABM) has featured prominently in earlier safety simulation studies,
especially those focused on modelling worker-site interactions, it is typically constrained by rule-based
logic, limiting its capacity to simulate emergent or adaptive behaviours in dynamic environments
(Bonabeau, 2002; Lu and Olofsson, 2014). In contrast, the emergence of Reinforcement Learning (RL)
presents a promising alternative. By enabling agents to learn optimal behaviours through iterative
interaction with their environment, RL avoids the need for manually programmed heuristics and opens
pathways for more realistic behavioural simulations (Sutton and Barto, 2018).

This review is structured around three core thematic areas that underpin the development of a hazard-
seeking simulation framework for construction planning:

e Building Information Modelling (BIM): The use of BIM for hazard representation, safety
planning, and spatial data integration in construction environments.

¢ Reinforcement Learning (RL): The application of RL to enable agents to learn navigation
strategies, respond to environmental hazards, and adapt to spatial changes.

e Game Engines: The role of simulation platforms such as Unity, Unreal Engine, and Godot in
visualising BIM-derived environments and training intelligent agents.

The literature reviewed spans peer-reviewed journal articles, conference proceedings, and academic
theses published between 2000 and 2025. Priority was given to research with demonstrated application
to safety in construction, as well as studies that integrate simulation, behavioural modelling, or
autonomous agent training. Targeted keyword searches included terms such as “BIM for safety”, “agent-

based modelling in construction”, “reinforcement learning for hazard detection”, and “game engine
simulations in construction safety”.

A summary of the reviewed literature, including their thematic relevance and contributions, is provided
in Table 1.
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Table 1 - Summary of reviewed Literature on BIM, ABM and RL

Game
Author(s) & Year Title BIM ABM RL
Engine
. Interoperability challenges in BIM-to-Game
Afsari et al. (2017) ) P . Y 9 v v
Engine pipelines
. Utilising game engines for BIM-based
Afsari et al. (2021) . g g g v v
simulation
Alves and Junior  Interactive simulations using Godot for /
(2020) architectural education
Automated construction hazard identification
Amer et al. (2023) ) . . .
and prevention using NLP and BIM integration
Amodei et al. Agent-based modeling: Methods and techniques /
(2016) for simulating human systems
Agent-based modelling: Methods and techniques
Bonabeau (2002) . . v
for simulating human systems
Integrating reinforcement learning and ABM for
Chenetal. (2022) ' 9raing remntorceme J v
adaptive safety simulations
Evaluating agent navigation through platform
Chi et al. (2014) . gad . _g . J p_ . v
and stair constraints in virtual construction sites
- Using open-source game engines in urban
Diniz et al. (2022) g_ P ) J J v
planning education
Dirgen Tozer et al. Safer designs with BIM-based fall hazard /
(2024) identification and accident prevention
Comparative evaluation of Unity and Unreal
Fang et al. (2020) . . e v
Engine for construction safety visualisation
Reinforcement learning in interactive
Gao et al. (2021) g v v

construction simulations using Unity
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Game
Author(s) & Year Title BIM ABM RL
Engine

Integrating reinforcement learning and virtual
Gao et al. (2021)  reality for intelligent construction training v
environments

Guan et al. (2021) RL-based safety-aware pathfinding for Y y y
' construction robots in 3D BIM environments

Guo etal. (2012) A 4D model for tower crane safety planning v

Guo and Yiu Evacuation simulation in high-rise construction: v

(2016) An agent-based approach
Predicting safety behaviour in the construction

Guo etal. (2020)  industry: Development and test of an integrative v
model

Hardin and McCool BIM and Construction Management v

(2015) g
Reach-avoid reinforcement learning with safet

Hsu et al. (2021) g y v
guarantees

Khalili and Crane path optimization using reinforcement v

Helander (2020)  learning

Kim and Chi Hazard simulation using 4D BIM for proactive

(2019) safety planning

. Automated information retrieval for hazard

Kimetal. (2013) . . . . .
identification and safety compliance using BIM

Koo and Fischer  Feasibility study of 4D CAD in commercial v

(2000) construction

Konda and

o Actor-critic algorithms v
Tsitsiklis (2000)
Leike et al. (2017) Al Safety Gridworlds v
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Game
Author(s) & Year Title BIM ABM RL
Engine
. Integration of BIM and agent-based modellin
Liu et al. (2015) 9 L J . d v
for construction site safety planning
. Agent-based simulation of pedestrian—vehicle
Liu et al. (2018) g . . P v
conflicts in construction zones
Lu and Olofsson  Building information modelling and planning: a
(2014) 4D safety perspective
Building information modelling and agent-based
Lu and Olofsson _g ) . g . g
(2014) modelling integration for construction safety v v
analysis
Rule-based detection of temporal hazards using
Luetal. (2015
( ) BIM and construction schedules
A deep reinforcement learning approach for
Ma et al. (2020) P _ gapp v
robot path planning
STROBOSCOPE: State and resource-based
Martinez (2001) : . . v
simulation of construction processes
. Human-level control through deep reinforcement
Mnih et al. (2015) .
learning
Mohammadi and A hybrid safety risk assessment approach for /
Tavakolan (2019) construction projects
Nikolic and Developing agent-based models based on /
Ghorbani (2011) institutional statements
Immersive simulation environments for safety
Park et al. (2021) L . v
awareness training in construction
Framework for integrating safety into VVR-based
Pedro et al. (2016) . . grating y v
construction training
Sadeghi et al. Linking BIM and ABM for construction safety /
(2019) analysis
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Game
Author(s) & Year Title BIM ABM RL
Engine
Construction safety planning using the safet
Sacks et al. (2009) . yP g g y
activity theory model
Sutton and Barto Reinforcement Learning: An introduction v
(2018) g
Tavakolan and An agent-based model for evaluating v
Nasirzadeh (2014) construction projects’ safety performance
Teizer and Cheng  Proactive safety simulation in 4D BIM v
(2015) environments
Wang and Truijens BIM-based immersive visualization for safety / v
(2018) training using Unity3D
Wang et al. (2014) Serious games for workplace safety v
Xu et al. (2023) Ex?r_nining construc.tion .group. ’s safety attitude v
resilience under major disruptions
A reinforcement learning-enhanced ABM for
Yang et al. (2023) . . . . v v
dynamic construction safety simulation
Towards an Integrated Framework for Digital
Zaman et al. (2024) J g v v

Twins in Construction Safety Training

Zhang and Fang

Behavioural modelling of construction workers v
(2022)

BIM and safety: Automatic safety checking of

Zhang et al. (2013) construction models and schedules

Simulation-based evaluation of training
Zhang et al. (2015) . . . v
effectiveness in construction safety

Reinforcement learning applications in
Zhao et al. (2022) i . v
construction: A review
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2.1. Building Information Modelling (BIM) for Safety Management

Prior to the adoption of Building Information Modelling (BIM), construction safety planning was
typically reactive, fragmented and largely based on 2D documentation. Site safety inspectors and
supervisors relied on printed hazard logs, safety signage, toolbox talks, and static checklists to manage
risk. These methods often proved unfruitful as they suffered from poor coordination between design and
field teams. Additionally, these methods limited visualization of complex spatial arrangements as well
as created an inability to foresee the dynamic interaction that would occur between workers, equipment
and the environment (Teizer et al., 2013; Sacks et al., 2018). Safety data was often soloed, inconsistently
updated or entirely absent during the design phases, leading to oversights that manifested during actual
construction.

BIM offers a significant advancement that enables real-time collaboration across disciplines by the
introduction of a data-rich and model-based process. Rather than representing isolated safety data, BIM
directly integrates it into parametric model elements. This allow for the embedding of hazards, risk
zones as well as protective systems into the digital twin of the construction environment (Azhar, 2017;
Hardin and McCool, 2020). This level of integration supports early detection of safety issues during
design, especially when paired with automated rule-checking systems. Studies have demonstrated
BIM’s utilization in hazard detection, spatial conflict analysis and regulatory compliance. For example,
Guo et al. (2012), so as to identify potential collision points and exclusion areas in advance, applied
BIM in the simulation of crane operation zones. In a similar fashion, Zhang et al. (2015) developed a
model in BIM that flagged incomplete edges and structural voids prior to construction.

The incorporation of safety parameters into BIM workflows allows for pre-construction risk
identification and mitigation. Safety managers can simulate spatial relationships between building
components, equipment, and temporary works, enabling early detection of conflict zones such as
proximity to unprotected edges, inadequate clearance, or workspace congestion (Zhou et al., 2012; Kim
et al., 2013). Through integrated safety object libraries, BIM models can embed metadata relating to
guardrails, scaffolds, signage, or restricted zones, allowing for rule-based compliance checking using
tools like Solibri Model Checker and Autodesk Navisworks.

BIM has also enabled standardisation in safety auditing by encoding regulatory requirements into
reusable rule sets. For example, checks for edge protection, barrier placement, and working-at-height
constraints can be semi-automated through embedded validation logic (Dirgen Tozer et al., 2024). These
features reduce reliance on manual inspection or domain expertise during early design phases and
facilitate iterative refinement of safety strategies.

Advanced BIM platforms such as BEXEL Manager and Tekla Structures allow users to annotate and
schedule the installation of temporary safety elements, offering support for compliance-based planning.
Metadata attached to model components can specify usage conditions, permissible durations, and
removal triggers, supporting structured safety planning. Guo et al. (2020) highlight the ability of BIM
to streamline coordination of such temporary installations, ensuring alignment between design intent
and on-site execution.
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Despite these developments, the application of BIM in safety planning has largely remained constrained
to static rule sets or compliance verification procedures. Most safety audits within BIM environments
are conducted using pre-scripted logic or hard-coded rule libraries, which assume predictable
construction progressions and predefined hazard types (Chi, Caldas and Golden, 2014). This makes
them less effective in detecting context-specific or emergent risks that arise from changes in sequencing
or site layout. For example, temporary slab removals or scaffold dismantling phases may create
hazardous voids that remain undetected if not explicitly defined within the rule sets.

As illustrated in Figure 1, traditional BIM-based safety management systems often apply pre-scripted
rules at specific construction task transitions. These rules are typically derived from established safety
ontologies, regulatory databases such as OSHA, and libraries of industry best practices. When a safety
issue is flagged, the system suggests corrective actions from a predefined repository and generates an
action report for stakeholder review. While this approach introduces procedural rigour, it remains
inherently reactive and limited by the scope of encoded knowledge (Chi, Caldas and Golden, 2014). It
does not accommodate unforeseen hazards or deviations from the planned schedule—highlighting the
need for more adaptive, behaviour-driven safety modelling.

B:itl,gie'lﬂ Schedule Action
Report
-

Apply Rules at Construction Safety Corrective

Work Task Transitions [ssues | Actions

]
Library
Construction Safety
: OSHA of Safety
|
EBest Practices Ontology Actions

"'\-\.\_‘_\__

Figure 1 - Framework for implementing an automated rule-based safety checking in BIM
(Source: Zhang, 2014)

Additionally, BIM’s capacity to simulate behavioural responses or model how workers interact with
temporary conditions is inherently limited. While visual walkthroughs may assist in understanding risk
zones, they do not inherently support autonomous safety decision-making or adaptive interaction
modelling. Interoperability challenges—particularly when integrating third-party safety datasets or
custom simulation components—further constrain BIM's potential in fully automating hazard detection
(Afsari, Eastman and Shelden, 2021).

Recent efforts have sought to extend the utility of BIM by exporting model data into game engines and
immersive simulation environments. These transitions aim to enhance spatial awareness and improve
end-user comprehension through real-time interaction. However, such applications still primarily rely
on static model geometry and predefined logic rather than enabling adaptive or learning-based agent
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interaction (Fang et al., 2020; Alves and Junior, 2020). As such, while BIM offers a robust platform for
compliance-based planning and spatial hazard visualisation, its role in simulating dynamic or emergent
safety conditions remains limited.

2.2. 4D BIM and Safety Simulation

4D introduces the temporal dimension where 3D components are linked to the construction while the
traditional BIM provides the building’s physical elements in a static manner. This incorporation enables
planners and safety engineers to simulate the constantly evolving workings of a construction site by
providing a dynamic lens through which safety risks assessment may be carried out. As noted by Koo
and Fischer (2000), 4D models offer momentous potential in construction sequencing, detection of
clashes and the visualization of temporary structures such as scaffolding. The changeover from 3D to
4D modelling has been critical in the enhancement of the accuracy and relevance of safety analysis. By
aligning safety checks with the construction timeline , 4D BIM permits for the anticipation of hazards
that may possibly only emerge at specific stages of construction.

For example, at the onset of the project, hazards such as unguarded voids or incomplete floors may not
pose as hazardous, but later transform as such at intermediate stages. Zhang et al. (2013) made an
emphasis about this by demonstrating the employment of 4D safety checking. The assessment would be
for forecasting when certain protective measures would be needed, using rule-based simulations aligned
with the project’s Gantt chart.

Additionally, 4D supports the use of what-if analyses in safety management. The application allows for
the manipulation of the sequence of activities and construction activities. Safety planners can then
simulate multiple alternative scenarios to assist them in the identification of the safest construction path.
Tools such as Navisworks and Synchro have been widely adopted to visualise such time-dependent
simulations, offering granular control over the scheduling and appearance of temporary safety
installations. The usage of these tools has significantly increased as they do not just visualize
walkthroughs but also as a basis for automated reasoning and early risk flagging (Lu and Olofsson,
2014; Zhao et al., 2020).

Despite these advantages, the application of 4D BIM to proactive safety simulation remains
underdeveloped in practice. Afsari et al. (2021) observed that rather than focusing on behavioural
prediction or hazard forecasting, 4D simulations were still mainly used for visual review and clash
detection. Similarly, Zhou et al. (2022) found that despite advancements in research related to safety-
related 4D modelling, there is still a hindrance to its adoption by a lack of interoperability, user training
and integration with active learning systems. Moreover, an additional challenge lies in the representation
of temporary risk elements within 4D BIM. It is easy to model permanent structures in BIM authoring
tools such as Revit or ArchiCAD. However, temporary site conditions such as edge voids, formwork or
material stacks are often modelled informally or completely omitted from the onset, limiting the
accuracy of safety simulation. Dirgen Toézer et al. (2024) highlighted the importance of the
representation of these temporary elements to avoid blind spots specifically in relation to fall hazard
identification.
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Figure 2 — Multi-level Framework for Safety Rule Enforcement in BIM-Based Environments
(Source: Zhang, 2014)

In a bid to overcome the outlined limitations, as previously stated and as illustrated in Figure 1, some
researchers, have proposed the use of rule-based extensions and plug-ins specifically related to safety
that automatically flag high-risk tasks as the simulation timeline progresses. For example, Zhang et al.
(2015) combined BIM and ABM* to demonstrate how construction tasks can be coupled with hazard
occurrence rules to predict the likelihood of unsafe events. The combination establishes a foundation
for more intelligent simulation paradigms.

A particularly illustrative example of this multi-layered pipeline is shown in Figure 2, where safety
rules are translated into logic-based interpretations and executed via BIM-integrated platforms to
identify risks and communicate corrective actions directly to site-level operations. The structured flow
demonstrates the potential use of 4D BIM not only as a modelling tool but as a dynamic safety
management system embedded into the lifecycle of construction execution (Kim et al., 2013). Merging
temporal awareness with model-based reasoning paves way for what can be described as a predictive
safety simulation. Instead of the provision of a simple site visualization, the goal converts to foreseeing
the time and location of the placement of interventions, ensuring that safety planning is an embodiment
of the sequencing logic. This predictive layer is where 4D BIM begins to intersect meaningfully with
agent-based and intelligent systems, which are discussed in the following section.

1 To be detailed further in Section 2.3
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2.3. Agent-Based Modelling (ABM) in Construction Safety

Agent-Based Modelling (ABM) is a computational simulation method that represents individual entities,
or “agents”, operating autonomously within a defined environment according to behavioural rules
(Bonabeau, 2002). Agent-Based Modelling (ABM) has emerged as a versatile approach for simulating
individual and group behaviour within dynamic and spatially complex systems, such as construction
sites. At its core, ABM is based on the representation of autonomous entities, known as agents, which
operate according to programmed behavioural rules within a virtual environment (Bonabeau, 2002).
These agents may represent construction workers, machinery, vehicles, or other entities interacting on
a jobsite. Their local decision-making and interactions with one another allow researchers to observe
emergent phenomena such as crowd dynamics, spatial congestion, safety violations, or task interference.

In relation to the construction industry, ABM has gained traction due to its modelling approach where
decisions and human behavioural patterns on site are decentralised. This feature aids researchers and
practitioners alike in the simulation, analysis and mitigation of hazardous situations before they are
actualised. For example, Sacks et al. (2009) developed an agent-based framework to evaluate the spatial
coordination of crews during concrete formwork activities. Their simulation revealed potential for task
overlap and proximity risks that traditional planning overlooked. Similarly, Zhang et al. (2015) created
an ABM to test the effectiveness of safety training interventions by simulating different worker
responses to warning signage and supervision levels.

Evacuation scenarios have also been widely explored. Guo and Yiu (2016) developed an ABM to
simulate emergency evacuations in high-rise buildings under construction, assessing how various stair
configurations and obstruction placements affected egress time and congestion. Their findings provided
insight into how real-time site layout influences escape behaviours, especially in constrained
environments. In a similar vein, Zohdy, Omar and McCabe (2020) implemented agent-based evacuation
modelling on scaffolding platforms, accounting for agent fatigue and speed variations.

Traffic and collision risks between workers and machinery represent another focus area. Liu et al. (2018)
created a hybrid ABM to analyse pedestrian—vehicle conflict zones on construction sites, revealing how
different scheduling and site logistics strategies impacted the frequency of near-miss events. The ability
to test multiple layouts and work schedules using ABM has provided planners with a powerful tool for
visualising safety-critical scenarios prior to site implementation.

It should be noted that ABM allows for the exploration of risks that are emergent as they do not arise
from unsafe actions that occur in isolation but from the cumulative effect of numerous agents interacting
within the environment. Zhang et al. (2020) demonstrated that the intergration of wearable sensor data
with ABM frameworks can aid in the simulation of how fatigue or inattention dissaminates among crews
which may increase the collective risk exposure. This approcah shits beyond static hazard checklist and
embraces a more holisitc view of safety as a dynamic and responsive process. A predominantly
persuading application of ABM in safety research is embedded in its capacity to model psychological
and behavioural resilience in the aftermath of disruptive incidents. Xu et al. (2023) proposed an ABM
framework that would aid in the quantification of the safety attitudes of construction groups. The
framework would gquantify the deterioration and subsequent recovery of a group following an impactful
event such as a fatality or near-miss. Their work presented a two-phase recovery curve that captures
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both the immediate psychological response as well as the restoration of safety culture that may occur at
a later time. Figure 3 below is particularly pertinent in today’s current safety planning practices as it
enables project managers and planners to test the effectiveness of various interventions. The
interventions such as training, reinforcement or team restructuring were introduced in a bid to shorten
the recovery phase or in the minimization of the depth of the initial response shock. Such foresight that
is driven by simulations is valuable for the mitigation of risks as well as improving worker morale and
ensuring safety engagement over time.

Safety attitude status
of construction group
members A

Ideal condition: The safety

attitude of the group is

restored to its initial state
An event that has an impact \

Response
Iz;?’: phaspeo Recovery phase
impact
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Figure 3 — Construction workers’ safety attitude resilience model (Adapted from Xu et al., 2023;
originally from Guo et al., 2020).

Furthermore, ABM when used in tandem with 4D BIM, can be used for the visualization of evolving
safety scenarios. When coupled with construction sequence data, agents can in synchrony provide
simulations of unsafe site behaviour along with construction progress, identification of bottlenecks or
zones where congestion frequently occurs (Zhang et al., 2015). The combination of BIM with ABM
offers a hybrid enhancement of the predictive capabilities of digital safety planning as it bridges static
model data with instantaneous simulation logic. On the other hand, while ABM provides granular
insights into behavioural safety, its realism is contingent on the quality of the assumption underpinning
each agent’s logic. A key challenge persists in the definition of a plausible set of rules applicable for
human behaviour especially in the context of cultural, organisational or variables related to stress (Lu
& Olofsson, 2014.) Moreover, ABM simulations often require extensive calibration and validation based
on field data. This is usually something that is not always readily available in the context of construction.
Despite these limitations, ABM holds significant potential in its ability to serve as a complementary
layer in the realm of digital safety simulations due to its ability to model collective behaviour,
psychological response and human based interaction. These features positively rank its suitability for
integration into hazard forecasting and construction safety planning frameworks.
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2.4. Reinforcement Learning (RL) in Construction Safety

Reinforcement Learning (RL), a subfield of machine learning, has gained increasing interest in recent
years for its potential to simulate adaptive decision-making in dynamic environments. At its core, RL
enables an autonomous agent to learn optimal behaviours through repeated interaction with an
environment, guided by a system of rewards and penalties (Sutton and Barto, 2018). Unlike rule-based
or supervised learning methods, RL does not rely on predefined labels or deterministic scripts. Instead,
it continuously refines its strategy (policy) based on trial-and-error exploration and feedback, making it
particularly useful in contexts where outcomes are uncertain or environments evolve over time.

The standard RL framework consists of an agent, environment, state space, action space, and a reward
function. The agent observes the current state of the environment and selects actions that influence future
states. It then receives feedback in the form of rewards (or penalties), which guide future action
selection. Over time, the agent seeks to maximise cumulative reward by improving its policy, often
through methods such as Q-learning, policy gradients, or actor-critic algorithms (Konda and Tsitsiklis,
2000; Mnih et al., 2015). In simulation contexts, RL is typically implemented within a Markov Decision
Process (MDP), where the probability of reaching a future state depends only on the current state and
action. This structure supports scalable learning across environments such as robotics, video games,
logistics, and increasingly, construction site simulation (Zhao et al., 2022).

Although RL has been widely studied in other engineering disciplines, its integration into construction
has been relatively recent. Early works often focused on task scheduling and path planning. For example,
Lin and Yang (2014) applied Q-learning to optimise construction crane movements in congested urban
sites. Similarly, Khalili and Helander (2020) developed an RL-based planner for tower crane path
optimisation, demonstrating improved efficiency compared to rule-based systems.

In terms of construction site navigation and safety, RL’s ability to autonomously explore and react to
unfamiliar conditions has made it a candidate for simulating mobile agents, such as workers or
inspection drones. Ma et al. (2020) employed a deep reinforcement learning approach to train robotic
agents for pathfinding in partially obstructed site layouts, simulating avoidance of dynamic obstacles.
Their model showed emergent behaviours that reflected collision-avoidant movement, suggesting that
RL agents can internalise spatial constraints without being explicitly instructed.

Safety-specific RL studies are still limited but growing. Lee et al. (2022) introduced a reinforcement
learning agent for hazard avoidance in simplified BIM environments. Using a reward structure
penalising proximity to predefined hazards, their agent learned to navigate around risky areas. Guan et
al. (2021) explored an RL-based simulation for fall prevention, in which virtual agents received negative
rewards for entering zones flagged as unprotected edges. These studies demonstrate the potential of RL
to adapt to complex spatial arrangements and changing site geometries without relying on fixed path
rules.

Reinforcement learning has also been tested in virtual reality (VR) and digital twin contexts. Gao et al.
(2021) integrated RL with game engine simulations to replicate worker training scenarios, enabling Al-
driven feedback loops within immersive environments. This approach supports both skill development
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and safety education by dynamically responding to trainee behaviour in real-time. Compared to ABM
and rule-based logic, RL presents several key advantages for simulating safety-related behaviours:

o Adaptivity: RL agents can adjust strategies dynamically based on environmental changes,
without the need to hardcode new rules.

e Generalisation: Once trained, agents can often perform across varying layouts or unseen
environments, enhancing scalability (Zhao et al., 2022).

o Policy Optimisation: RL systems inherently aim to optimise long-term outcomes (e.g., reduced
hazard exposure or improved exploration), rather than relying on local or immediate decisions.

e Stochastic Resilience: RL models can account for uncertainty and randomness in agent
decisions, making them more reflective of real-world worker variation.

These properties make RL a promising tool for modelling safety behaviours that are situational, context-
dependent, and difficult to predefine.

Despite these strengths, RL applications in construction safety remain in their infancy. Several practical
and methodological challenges persist. One major constraint is the complexity of environment
modelling. RL agents require thousands or even millions of interactions to learn effective policies,
necessitating detailed and responsive virtual environments (Zhao et al., 2022). The creation of such
environments—especially ones that accurately reflect partial construction states, evolving site geometry,
or hazard metadata—is both time- and data-intensive.

Another issue lies in reward function design. Defining what constitutes “safe” or “unsafe” behaviour in
a quantitative reward structure is not trivial. Sparse or misleading rewards can lead to suboptimal
learning or unsafe exploration (Gao et al., 2021). Furthermore, without real-world data or physical
measurements for calibration, RL agents may develop behaviours that are mathematically optimal but
not necessarily aligned with human-safe practices.

Interpretability also remains a barrier to industry adoption. Unlike rule-based systems, where decision
logic is transparent, RL policies, especially those based on deep neural networks, are often “black-box”
in nature. This can reduce stakeholder confidence, particularly in critical safety scenarios where human
oversight is essential (Amodei et al., 2016).

From a technical standpoint, transfer learning, the ability of an RL agent trained in one environment to
operate in another, has shown promise but remains underdeveloped in construction applications. Most
existing implementations are limited to fixed environments, requiring retraining or manual adjustment
to new sites (Guan et al., 2021).

Finally, ethical considerations surrounding simulated unsafe behaviour, especially in training scenarios,
require careful framing. Rewarding hazardous exploration in simulation must be balanced with a clear
distinction from encouraging risky behaviour in real-world settings (Leike et al., 2017).
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2.5.  Game Engines in Construction Safety Simulation

The use of game engines in construction research has gained considerable traction due to their capacity
for real-time 3D visualisation, physics-based simulation, and agent interactivity. Originally developed
for entertainment and gaming, engines such as Unity, Unreal Engine, and Godot have since been
repurposed as powerful platforms for immersive training, behavioural simulation, and interactive
visualisation across engineering domains (Wang et al., 2014; Afsari, Eastman and Shelden, 2021). In
the construction sector, these engines enable the development of digital environments that replicate site
conditions with high spatial and temporal fidelity, thereby supporting proactive safety planning,
educational modules, and Al-based experimentation.

Modern game engines offer a combination of rendering pipelines, physics systems, animation
controllers, and scripting APIs, allowing for flexible and realistic digital twin environments. This
flexibility is essential in construction contexts, where the simulated environment must respond
dynamically to agent behaviour, structural progression, and hazard emergence (Wang and Truijens,
2018). Game engines also support collider-based detection, navigation meshes, and real-time lighting
that enable interactive experiences grounded in physical logic. When integrated with BIM-derived
geometry, these features allow for accurate spatial feedback, such as detecting collisions with ledges,
interactions with scaffolding, or movement along staircases, during virtual construction walkthroughs
or training simulations (Zhang, Chi and Lee, 2021).

Unity and Unreal Engine are the most widely adopted platforms in construction simulation studies due
to their extensive documentation, cross-platform support, and community-developed libraries. Unity, in
particular, has been employed in a variety of safety training contexts. For instance, Pedro et al. (2016)
developed a Unity-based virtual reality (VR) module to train workers in the identification of fall hazards
and unsafe site practices. Participants could navigate a virtual site environment using head-mounted
displays and receive instant feedback based on their decisions. Similarly, Chan et al. (2021) used Unreal
Engine to simulate confined-space hazards and test evacuation strategies. The interactive nature of the
environment allowed researchers to assess behavioural responses under timed and constrained
conditions, offering insights not easily captured by static BIM visualisations. Both engines also support
integration with reinforcement learning toolkits such as ML-Agents (Unity) and OpenAl Gym (via
Python bindings), facilitating the training of adaptive Al agents within construction-like environments
(Gao et al., 2021). This capability has opened new pathways for simulating safety-aware behaviours that
evolve over time.

Godot Engine, though newer and comparatively less adopted in construction literature, presents a robust
open-source alternative. It offers built-in scripting with GDScript (or C#), scene management tools, and
an active developer community. Its lightweight architecture makes it particularly suitable for academic
prototyping, enabling users to deploy 3D simulations without licensing constraints or large memory
overheads (Alves and Junior, 2020). While examples of Godot in mainstream construction research
remain limited, recent work has explored its potential as a simulation host for training intelligent agents
in built environments. Studies have reported its successful use in architecture and planning education
due to its modular scene graph and ease of importing IFC-derived 3D assets (Diniz et al., 2022).
Moreover, its support for raycasting, custom physics layers, and agent kinematics allows researchers to
script behavioural experiments with precision, a key requirement in safety-critical applications. The
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emergence of Godot 4.x has also enhanced the engine’s compatibility with external Al frameworks,
enabling it to serve as an environment for reinforcement learning via Python-Godot bridges or
WebSocket integrations. These features suggest a growing role for Godot in experimental construction
simulations, particularly in academia and open-source research settings.

Compared to traditional BIM viewers or rule-based simulators, game engines offer the following
advantages:

High-Fidelity Spatial Representation: Allows users to explore the virtual site in first-person
or third-person view with dynamic lighting, shadows, and material realism.

e Real-Time Physics and Behavioural Feedback: Enables agents to interact with moving
platforms, fall from ledges, or respond to changing gravity or friction conditions.

e Customisable Reward Structures and Logging: Essential for reinforcement learning or
behaviour logging during hazard-seeking or navigation tasks.

e Immersive Training and Stakeholder Engagement: Supports VR headsets, haptic
controllers, and interactive interfaces for training, walkthroughs, and stakeholder review.

These features collectively transform passive BIM models into active, behavioural environments that
are responsive to user input and agent logic, offering a deeper understanding of spatial safety conditions.

Despite their versatility, game engines also introduce challenges. One common issue is the translation
of BIM data into a format usable by game engines. While IFC files can be imported into intermediate
platforms like Blender, the process often results in loss of metadata or requires remapping of materials
and hierarchies (Afsari et al., 2017). Additionally, game engines are not natively designed to support
construction-specific ontologies or scheduling data, requiring custom scripts or plugins for 4D
integration.

Another limitation concerns the validation of behavioural realism. While game engines allow agents to
simulate movement and interaction, the fidelity of their decisions depends heavily on the physics and
Al logic embedded within the engine. Without appropriate calibration, simulated behaviours may
diverge from real-world expectations, especially in safety-critical tasks (Zhao et al., 2022). Lastly, the
interoperability between simulation platforms, data storage systems, and analysis frameworks remains
a technical hurdle. Ensuring seamless communication between BIM models, training logs, and RL
algorithms often demands extensive middleware or custom integration efforts.

2.6. Summary of Gaps in Existing Literature

The literature reviewed in this chapter demonstrates significant advances in digital approaches to
construction safety simulation, yet several key limitations persist across the examined domains.

In the case of Building Information Modelling (BIM), most implementations remain focused on static
hazard visualisation and rule-based assessments. Despite the availability of 4D scheduling tools, their
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application in safety planning tends to be compliance-oriented, with limited support for modelling the
evolution of risk throughout the construction sequence. Integration challenges between BIM software
and simulation environments also hinder the seamless translation of geometric and semantic data.

Agent-Based Modelling (ABM), while valuable for representing worker-environment interactions,
continues to rely heavily on predefined behavioural scripts. This constraint limits its effectiveness in
simulating adaptive or unanticipated safety responses, particularly in dynamic and partially completed
site conditions.

Reinforcement Learning (RL) has shown promise in adjacent domains, but its application in
construction safety remains nascent. Existing studies have not fully explored how learning-based agents
might autonomously identify and react to site hazards that are emergent, incomplete, or unlabelled. The
integration of RL with spatially complex and evolving construction environments is also
underdeveloped.

Lastly, while game engines provide the technical capacity for real-time simulation and behavioural
testing, their use in safety-focused research has been limited. Most applications to date have prioritised
user-controlled experiences or visual walkthroughs, rather than autonomous simulations with learning
agents. Interoperability issues between BIM models and game engines further complicate attempts to
establish coherent simulation workflows.

Together, these limitations point to a fragmented landscape in which behavioural simulation, safety
modelling, and digital construction tools have yet to be fully integrated into a cohesive, adaptive
framework.
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3. METHODOLOGY

The objective of this chapter is to provide a detailed methodological account of how the proposed
simulation framework was designed, implemented and evaluated. In line with the exploratory nature of
the research, the methodology focuses on the technical feasibility of integrating Building Information
Modelling (BIM), game environments and Reinforcement Learning (RL) agents for proactive
construction safety analysis. Rather than pursuing performance optimisation or benchmarking against
industry metrics, the methodological deign emphasises modular integration and proof of concept
validation. This aligns with observed gaps in the literature, where existing studies often treat BIM,
simulation and intelligent agent logic as disconnected components (Zhou et al., 2022; Duan, 2025).

This methodology is structured around a sequential pipeline comprising five stages as outlined below.

BIM and asset preparation,

Environment setup within a game engine,
RL agent definition and configuration,
Training execution and;

Output logging and visual analysis.

o~ w b

These stages were derived from existing practices in digital construction (e.g., Park et al., 2021; Fang et
al., 2020) but adapted to suit the unique demands of simulating autonomous hazard-seeking behaviour
within partially constructed 4D BIM environments. Each stage is elaborated with specific tools, formats
and logic structures used in implementation, such as the translation of IFC files from Revit into Blender
to reduce mesh complexity while retaining structural fidelity. Within Godot, spatial logic is implemented
through a combination of nodes and the setup of physical bodies and ray-based sensors. The training of
the agent uses proximal policy optimisation (PPO) from the stable_baselines3 python library. The
training and evaluation pipeline is entirely contained within the simulation environment, allowing agents
to interact with spatial data in real time without external data dependency.

The methods described in this chapter serve to illustrate technical feasibility as well as to demonstrate
how such systems can be constructed and scaled for future use. Extra mind is paid to ensure that each
methodological choice reflects the constraints and intentions of the research. Emphasis is particularly
set on the discovery rather than the avoidance of construction hazards during planning phases. This sets
the stage for the discussion of results in the following chapter, which interprets the agent’s performance
in relation to the design goals established here.

3.1. Research Design

This research adopts an exploratory, design-based methodology with the primary objective of
developing and demonstrating a simulation framework capable of integrating Building Information
Modelling (BIM), game engine environments and reinforcement learning (RL). The study does not
attempt to optimise learning performance or generalise across different construction contexts. Instead,
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it presents a proof-of-concept prototype to show that such integration is feasible and potentially
beneficial for proactive construction safety analysis.

Unlike traditional safety research grounded in statistical analysis or site-based case studies (Hinze,
2006), this approach relies on simulation and synthetic data generation to mimic unsafe conditions. It
aligns with broader trends in construction informatics, where digital twins and virtual environments are
increasingly used in the testing and validation of workflows prior to physical execution (Zhou et al.,
Guo et al., 2020). The chosen strategy centres on constructive realism, where simulation serves as a
controlled testbed to explore agent behaviour under varying spatial and hazard conditions. The realism
stated is operational rather than physical. This means that hazards are not explicitly tagged or predefined
and interaction occurs in ways that are consistent with how safety risks manifest in partially complete
buildings (Amer et al., 2023).

Given the novel intersection of technologies involved such as BIM, physics-based simulation and RL
agents, this study adopts a pipeline-oriented design. The stages are arranged sequentially to reflect a
logical flow. The asset is first prepared, followed by the setup of the environment, agent configuration
and training and concluding with the evaluation of the output. Each stage is discrete yet interdependent,
while ensuring that methodological transparency is maintained and future feasibility is supported as
well.

« RL Agent Definition
« Training Execution
« OQutput Log & Analysis

R A ool o

BIM & Asset
Preparation

Y

Model Optimization

R Revit "@ Blender @ Godot ' Python

Figure 4 — Methodology sequence

Furthermore, Godot Engine, an open-source 3D game development platform, was chosen for this
research as it ensures flexibility and adaptability. Unlike commercial platforms such as Unity or Unreal
Engine, Godot allows full access to low-level physics and scripting controls, which is particularly
important for simulating sensor-based perception and instantaneous interactions with incomplete or
hazardous environments (Fang et al., 2020; Afsari et al., 2021). This design decision supports the
broader objective of creating a configurable and extensible testbed for future RL research in digital
construction safety.

Importantly, the research does not seek to optimise RL parameters, or train agents ready for production.
The core contribution is to demonstrate how a simulation compatible with RL can be built from standard
BIM tools and how agents can be trained to explore and interact with simulated hazards. The findings,
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rather than deliver safety algorithms ready for deployment, are thus intend to inform planning at early
stages, safety reviews and future automation strategies.

3.2.  BIM Model Preparation and Export

The initial stage of the methodology involved the preparation and export of a 4D BIM model from a
commonly used construction design tool (Revit), followed by its conversion into a format suitable for
use in instantaneous simulation. This process was central to enabling the transition from static
construction data to a dynamic, navigable virtual environment where reinforcement learning (RL) agents
could perceive and interact with hazards. The exported model, representing the partial stage of
construction forms the foundation of the simulation and dictates the realism and spatial logic of the

environment.

Create 4D BIM

l

Partial Construction Stage Only
-No MEP/Material inclusion
-Geometry emphasis & Structure

|

Import IFC file into
Blender

|

Optimize Mesh for
game engine

|

Figure 5 — BIM model preparation and export workflow
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Revit was chosen due to its industry-wide adoption and compatibility with open standards such as
Industry Foundation Classes (IFC). The source model was developed to reflect a partially constructed
multi-storey building with conditions associated with early-stage construction safety risks such as
exposed stairwells and open elevator shafts (Zhou et al., 2012; Dirgen Tozer et al., 2024). Only
geometric and spatial information was retained, with material and mechanical detail intentionally
excluded to optimise simulation performance.

Figure 6 - BIM model in Revit

The model was exported from Revit in the IFC format, which supports open data exchange and preserves
essential hierarchical and spatial relationships between building components (Borrmann et al., 2009).
This format ensured that key structural elements such as slabs, beams and walls were recognised in
downstream tools. Given the limitations of the IFC schema for certain game-engine applications, only
elements relevant to spatial navigation and hazard interaction were preserved.

Blender served as an intermediary step between the BIM authoring tool and the game engine
environment. The IFC model was imported and several pre-processing tasks were conducted. The
optimisation ensured that the hierarchy preservation to maintain object naming and relationships occurs.
Such optimisation steps were essential to ensure compatibility with the Godot engine, which, although
powerful, has performance constraints when managing highly detailed architectural meshes.
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Figure 7 — Optimised BIM model in Blender

The optimised model was exported as a .blend file, Godot’s natively supported format. This approach
bypassed the need for additional asset conversion or loss of geometry metadata. The .blend file retained
object names, mesh origin points as well as the physical scale, which were later used in the assignment
of collision shapes. The export pipeline thus established a seamless bridge from authoring tools to the
simulation space, allowing the model to transition from a design artefact to an environment that was
instantaneous and easily navigable by an RL agent. This process builds upon existing methods for BIM
to game engine conversion (Park et al., 2021; Zhao et al., 2020) but refines them for the specific purpose
of RL training and hazard discovery.

3.3.  Game Engine Environment Setup

The simulation environment serves as the core stage upon which the reinforcement learning (RL) agent
interacts with and learns from a partially constructed 4D BIM model. Rather than relying in predefined
hazard markers or manually labelled danger zones, this study emphasized autonomous hazard discovery.
This means that the agent must infer risks solely based on sensor feedback and environmental
consequences. The environment was thus constructed to realistically reflect the incomplete and variable
conditions of construction sites, while remaining unannotated and open-ended to support exploratory
learning. The choice of Godot Engine as the game platform was due to its open-source nature, flexibility
and lightweight performance, making it suitable for both high-frequency physics simulation and custom
RL integration.
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3.3.1. Importing the BIM model into Godot

The environment design began with the import of the geometry from Blender into Godot. Assets
exported from the partial 4D BIM model were imported as .blend files, maintaining object hierarchies,
material assignments and spatial coordinates. Each imported mesh was instantiated as a StaticBody3D
with attached CollisionShape3D components, enabling physics-based interaction with the RL agent.
Unlike traditional BIM to simulation conversions, no semantic tagging or region-specific annotations
were applied during import. This ensured that architectural features such as slab edges, staircases, lifts
shafts or incomplete floors retained their raw geometric identities, requiring the agent to learn hazard
significance through interaction rather than inference from labels. Godot’s physics engine operates in
real time with gravity, collision and friction models activated. All imported bodies were set to interact
naturally with the agent, which meant that potential falls, impacts or environmental transversals occurred
as they would in a physically realistic virtual space.

3.3.2. Realism through structural incompleteness

To enable hazard discovery without bias, the model was purposefully selected to represent an incomplete
construction phase, as is typical in the early stages of planning, Features that represented latent risks
included:

e Unfinished edges of slabs without parapets or barriers

e Large vertical shafts such as stair voids or service shafts
e lIrregular floor segments with cantilevers or drops

e Exposed multi-level floor transitions.

These elements were not altered or enhanced with visual warnings or navigation cures. Their
representation was entirely geometric and physical, allowing the agent to experience the consequences
of unsafe navigation (e.g., falling from a height it entering a shaft) and adapt to its behaviour accordingly.
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Figure 8— BIM model in Godot with some elements hidden

This formulation of simulation aligns with the concept of “geometry-induced risk” discussed by Zhang
etal. (2015) and Kim et al. (2013), where architectural conditions inherently contain danger even if they
are not explicitly marked. By refraining from using metadata or markers, this study further diverges
from prior work that assumed hazard zones to be a certainty and instead promotes bottom-up learning
of spatial risk.

3.3.3.  Sensor-based perception design

The agent’s understanding of the environment relied entirely on its sensor array, built using Godot’s
raycasting functionality. The custom RayCastSensor3D module emitted multiple rays from the agent’s
body in a semi-circular arc that faced forward and downward. Key features included:

e Obstacle detection: Forward-facing rays measured distances to nearby static bodies (walls,
columns etc.) enabling obstacle avoidance learning.

e Ledge identification: Downward rays projected near the agent’s feet could detect the absence
of floor geometry, thus identifying potential falls or voids as is shown in Figure 9.

Joint Master Degree Programme

European Master in Building Information Modelling BIM A+ 27



Exploring agent-based models for construction planning using partial 4D BIM models

Figure 9 - Rays to detect the absence of floor geometry

e Stair detection: By comparing raycast elevation returns, the agent could potentially detect
transitions indicative of stairs or ramps.

Each ray (as displayed in Figure 10) returned either a hit Boolean or a normalised scalar value
representing the distance to contact and these were compiled into the agent’s observation space per time
step. Importantly, no direct hazard status was conveyed, the agent was never told whether something
was dangerous or not. Instead, it received rewards or penalties from the environment based on the
outcome of its actions, reinforcing the unsupervised hazard-seeking behaviour.

Figure 10 — Rays to detect and measure distances

This approach follows similar principles used in RL systems that were aware of obstacles (Hsu et al.,
2021; Guan et al., 2021), but with an inverse logic. The agent was not trained to avoid obstacles but to
instead seek and explore potentially unsafe areas in order to simulate safety inspections.
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3.3.4. Spawn point randomisation without semantic predefinition

To facilitate robust policy learning, agent spawn positions were randomised at the start of each episode
using a custom routine within the Player script. Instead of relying on predefined Marker3D nodes, a
curated list of valid (X, y, z) coordinates was hardcoded and maintained within the environment. These
coordinates were manually sampled across different floors, spatial zones and orientations to ensure
broad environmental coverage while avoiding invalid or obstructed spawn points that would result in
immediate failure (e.g., mid-air spawns or atop narrow ledges). This filtering process ensured that all
spawn zones were technically valid and physical accessible, while still retaining the semantic neutrality.
The workflow is illustrated below.

Randomize Spawn
Puosition

Mo

Is Spawn Valid?

Spawn Agent

Mo

» Observe

¥

Act

h

Get Reward

Yes

F 3

Is Episode QOver?

Yes
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™

Figure 11 - Spawn point randomisation workflow
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Unlike typical procedural simulations where spawn points are tailored toward specific goals or
scenarios, the selected coordinates carried no semantic labels or predefined proximity to risk. The agent
remained oblivious to its relative distance to hazard or reward elements at the beginning of each episode.
This neutral randomisation strategy encouraged exploration and discourages the memorization of fixed
danger zones or safe paths.

By keeping the spawn logic unbiased and decoupled from known hazard locations, the design adhered
to foundational reinforcement learning principles, particularly in reference to the requirement that the
learned policy should generalise across states rather than exploit static spatial patterns (Sutton and Barto,
2018).

3.4.  RL Agent setup and configuration

The reinforcement learning (RL) agent served as the autonomous system tasked with the making of
decisions within the virtual construction environment. It was required to explore its surroundings and
infer the presence of hazards through physical interaction. Unlike traditional safety simulations that rely
on following a scripted path or danger zones outlined from the outset, this study adopted a learning-
centric approach. The agent learned to identify, approach and interact with hazards based on a trial and
error basis. This section describes the architecture, observation space, action design and reward system
used to train the RL agent, highlighting how each component was configured to support proactive hazard
exploration.

3.4.1. Selection of RL algorithm

The algorithm selected for this study was Proximal Policy Optimization (PPO), a widely used policy
gradient method implemented via the stable_baselines3 library in Python. PPO strikes a balance between
performance and stability by limiting policy updates through a clipped objective function (Schulman et
al., 2017). It is especially well-suited for continuous control problems in high-dimensional state space,
such as 3D navigation tasks. PPO was chosen due to its successful application in similar tasks involving
robotic navigation (Guan et al., 2021), safe exploration (Duan, 2025) and adaptive policy learning under
sparse reward conditions.

@ ___.| GodotRL P
e API
Exposes the environment

Godot by Python
Environment I Programming

[ OpenAl Gym-style InterfaceJ

Figure 12 - Interface between Godot and Python
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The training was conducted using the Godot RL API, which exposed the game environment to Python
for instantaneous interaction via an OpenAl Gym-style interface. This setup allowed the RL agent to
receive observations, select actions and receive scalar rewards in synchronised timesteps.

3.4.2. Agent observation space

To interact effectively with the environment, the agent acquired an observation space that was rich and
aware of the context. Each observation vector provided to the policy network at every timestep included:

e Sensor Ray Data: Normalised distance readings from a multi-raycast system projecting forward
and downward from the agent’s body (as detailed in Section 3.3.3). These encoded both obstacle
proximity and ledge awareness.

e Velocity Vectors: The agent’s movement vector in local space (X, y, z), allowing it to track its
own speed and direction.

e Grounded State: A Boolean indicating whether the agent was in contact with a surface, used to
detect falls or jumps.

e Floor Height Index: A numerical representation of the agent’s vertical position, coarse-grained
into discrete levels (e.g., ground floor = 0, first floor = 1, etc.) to support generalisation across
multi-storey environments.

No visual inputs (e.g., RGB images) were used to maintain computational efficiency and interpretability.
3.4.3. Action space and control design
The agent was configures to use a continuous control scheme with two core action dimensions:

e Movement Control: Forward/backward movement, represented as a scalar in the range [-1, 1],
where -1 signified reverse and 1 full forward speed.

e Turning Control: Left/right rotation, represented as a scalar in the range [-1, 1], mapping to yaw
rotation speed.

This design enabled smooth and fluid navigation behaviour, allowing the agent to adaptively steer,
reverse or explore tight spaces such as stairwells.

The simplicity of the control scheme was intentional as it minimised the complexity of the action space,
allowing learning to focus on spatial awareness and hazard-seeking rather than fine-grained locomotion.

3.4.4. Reward Shaping

Unlike traditional reinforcement learning models that penalize unsafe behaviour, this study reverses the
paradigm. The goal is not to train an agent to avoid hazards, but instead intentionally seek out, identify
and interact with them. The agent acts as a proactive safety inspector within a simulated construction
environment, helping uncover unsafe conditions that might otherwise go unnoticed during early
planning stages.

The reward structure reflects this discovery-based philosophy:
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e +1.0to +3.0 reward for falling from an open edge or void, with high falls earning proportionally
greater rewards (e.g., a fall from the third floor yields more than a fall from the first). This
models the severity and significance of undetected risks.

e +1.5 reward for descending stairs, as this indicated the agent’s capacity to detect and utilise
vertical circulation routes which is important for assessing multi-level safety planning.

o +0.5 reward for physically entering or interacting with open edges, unguarded stairwells or
incomplete slabs. Even if the agent does not fall, this represents early identification of safety
gaps.

e -0.2 penalty for becoming stuck (minimal movement for a sustained period), to discourage idle
or ineffective behaviour.

e 0.0 neutral reward for general movement or non-hazardous navigation.

This reward system encourages the agent to learn through physical outcomes such as falling into a shaft
or walking off an unguarded edge becomes a positive event in training. From a safety planning
perspective, these interactions simulate the process of exposing weaknesses in site layout or incomplete
construction stages, allowing designers or planners to revise models before practical execution.

This approach aligns with the inverse safety training paradigms, where the agent’s failure is reframed
as a signal for design correction and not behavioural error. The model therefore promotes early detection
of hazardous features in the digital twin of the site, which is especially relevant and of priority in the
context of construction models that are evolving over time.

3.4.5. Episode Design and Reset Conditions

Each training episode began with a randomised spawn (Section 3.3.4) and lasted until one of the
following conditions was met:

e The agent encountered a predefined number of hazard interactions
e The agent was stuck or non-progressive for more than a stipulated duration
e A maximum time limit was reached
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Figure 13 — Episode reset workflow

At the end of each episode, cumulative rewards were logged and the environment was reset. This
episodic structure promoted short, focused learning cycles and discouraged overfitting to specific spatial
configurations.

3.5.  Training loop and convergence process

This section outlines the structure and components of the training procedure used to guide the agent in
learning behaviours related to hazards. The aim was to configure a repeatable and scalable training loop
capable of processing large volumes of interaction data while preserving architectural and algorithmic
consistency across training runs.

3.5.1. Episode lifecycle and environment reset

Training was structured around discrete episodes, each representing a bounded interval in which the
agent interacted with the environment under its current policy. At the start of each episode:

e The environment was randomised with the agent spawned at a new location across one of the
multiple building levels.

e Previously defined hazards (open edges, voids, shafts) were preserved and no predefined
waypoints or navigation cues were included.

Each episode terminated upon satisfying one of the following:

Joint Master Degree Programme

European Master in Building Information Modelling BIM A+ 33



Exploring agent-based models for construction planning using partial 4D BIM models

o A predefined number of steps elapsed (e.g., 1000 steps)
e The agent exceeded a “stuck” threshold (minimal movement over time)
e Hazard interaction conditions were logged as triggers (e.g., falling off an edge)

Start of Episode Randomized Agent
Spawn

Preserve Hazards

Episode Runs
under current policy

h

Check Termination
Condition

A

h A 4 y
Max Steps reached? Agent Stuck? Hazard Triggered?
L 4
Log Agent State,

Position, Reward

Reset Environment

Figure 14— Episode lifecycle and environment reset workflow

After each episode, the environment was reset and key interaction data (such as agent position, state
vector and reward signals) were recorded and passed in to the learning algorithm.

3.5.2. Training framework and algorithm configuration

The training pipeline combined external RL libraries with the Godot game engine to provide a modular
simulation-training architecture. Key components include:
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e Godot Engine (v4.4): Provided the 3D simulation environment with physics, collisions and
agent control.

e Godot RL API: Used to expose simulation parameters and step functions to external Python-
based training logic

e Stable_baselines3 PPO: Selected for its robustness in continuous state-action spaces and
compatibility with non-visual observations.

3.6. Simulation outputs and evaluation

After completing the training phase, the final policy checkpoint was reloaded into the Godot simulation
environment for episode replay and basic video capture. These replays were conducted under the same
environmental conditions, geometry, and physics setup as those used during training. No changes were
made to the agent’s structure, sensor logic, or control functions. The purpose of this step was to manually
observe the agent’s movements across multiple floors of the partially constructed model and to record
episodes for later inspection.

Each simulation run was initiated by randomly spawning the agent at one of the predefined valid starting
positions within the environment. The agent’s movement and interactions were governed entirely by the
trained policy, with no further learning or exploration noise applied during this stage. A fixed third-
person camera setup was used to follow the agent throughout each episode.

Replay sessions were recorded using screen-capture software. These recordings captured the full
simulation viewport, allowing for visual documentation of the agent's movements, collisions, and
interactions within the scene. No in-engine visualisation tools such as trail renderers or overlays were
implemented. Similarly, structured data logging (e.g., automated export of rewards, positions, or sensor
values to .csv or .json) was not configured during this phase. All review and interpretation of the
recorded behaviour were conducted manually using the visual recordings, and no real-time guantitative
data was exported directly from the Godot engine.

The purpose of these recordings was to support the qualitative assessment of the trained agent’s
navigation across the 4D BIM environment, which is discussed in Chapter 4.
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4. RL TRAINING AND RESULTS

The results of the simulation-based reinforcement learning (RL) experiment, evaluating the trained
agent's behaviour within the 3D construction environment developed in Chapter 3 are presented here.

The analysis is structured as a comparison between the expected outcomes, which were defined during
the system design phase, and the actual agent behaviours observed during controlled replay sessions
using the final trained policy. Each result described in this chapter is grounded in verifiable features of
the implementation, including the configured reward logic, sensor design, movement system, and
episode reset conditions. No modifications were made to the simulation environment or agent
parameters after training was completed. Replays were conducted using the final policy checkpoint,
with no further learning applied.

The agent operated in a structurally incomplete BIM-derived environment where risks such as ledges,
voids and unprotected stairwells were present but untagged. Its behaviour was shaped by a set of real-
time inputs including ray-based sensor readings, velocity changes, grounded state, and spawn position,
all of which formed the observation space used during training. Movement was continuous, and all
control decisions were generated by the trained policy without external scripting or manual intervention.
Reward shaping played a central role in influencing interaction patterns. Positive feedback was provided
for events such as falling from elevated surfaces, transitioning across floors, and exploring new areas.
Penalties were applied for inactivity, collisions, and re-entering previously visited zones. Importantly,
the agent had no prior map or semantic understanding of the environment; all learning occurred through
exposure to spatial configurations and reward outcomes. Spawn points were randomised across multiple
floors using validated locations, ensuring that the agent encountered a range of spatial contexts at the
start of each episode. Throughout the replay sessions, agent behaviour was documented through screen-
captured video recordings. As no structured data logging or in-engine visualisation overlays were
implemented, all interpretations in the subsequent sections are based exclusively on manual review of
these recordings and their alignment with system logic described in Chapter 3.

The following sections examine how the agent performed with respect to the initial expectations. Section
4.2 outlines the defined goals of the simulation, while Section 4.3 compares these goals to the actual
behaviours observed during replay. Sections 4.4 and 4.5 then discuss the implications of these findings
and suggest areas for refinement in future work.

4.1. Expected Outcomes at Project Inception

At the commencement of simulation training, a series of functional and expectations oriented around
performance were established for the reinforcement learning (RL) agent. The anticipated outcomes were
framed as performance benchmarks as well as indicators of the feasibility of integrating BIM-derived
geometries, game engine environments and RL-based autonomous behaviour into a unified safety
framework. The expectations outlined shaped the way the agent, environment and reward functions were
structured, with the goal of fostering autonomous behaviours that could reveal latent hazards in BIM-
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derived building layouts. Importantly, these were not predetermined results, but functional hypotheses
embedded within the design of the system.

The simulation departed from conventional RL use cases that aim for efficiency, survival or task
completion. Instead, it sought to explore whether a trained agent could reliably identify and interact with
spatial hazards, thus operating as a virtual analogue to a safety inspector in partially constructed
environments. These environments, unlike completed structures, often contain ambiguous and
temporary risk conditions which are rarely flagged in early-stage BIM models.

The expectations were divided into two categories: (1) functional behaviour that the system was
designed to encourage and (2) performance benchmarks derived from theoretical best practices or
likenesses to human inspection performance. The categories are described below.

4.1.1. Planned Functionality
e Hazard-Seeking Navigation

The core behavioural goal was for the RL agent to learn a navigation policy that would lead it toward
hazardous areas. Rather than avoiding the unsafe areas, the agent was incentivised to approach them
which is an inversion of the standard “survival” approached used in safe RL. The agent was expected to
identify unsafe spatial features based on the absence of floor geometry, unexpected elevation changes
or proximity to voids. Through trial and error interaction and reinforcement feedback, it was envisioned
that the agent would learn to associate such features with reward and consequently, seek them out in
future episodes.

o Detection of multiple hazard types

Three primary hazard categories were embedded within the environment, each selected based on their
prevalence in the construction incidents that occur in the actual sites:

o Open edges without guardrails — A common source of fall-related incidents, particularly
on upper floors or cantilevered sections.

o Incomplete floor sections — Representing missing slabs or transitional zones not yet
poured, which pose trip and fall risks.

o Unguarded voids and shaft openings — Including stairwells and service shafts, often
obscured or poorly marked in models in the early phases.

The agent was expected to detect all three hazard types, using only sensory inputs derived from raycast
returns and internal movement vectors, without explicit semantic annotations or labelled cues. This
mirror how sensor-based agents learn to identify patterns in visual or spatial data.

e Multi-Floor navigation and stair usage

Given that many safety risks span across vertical layers of a building, the agent was expected to navigate
between floors using staircases or falling through structural gaps embedded within the BIM-derived
model. The goal was not merely to explore isolated zones but to exhibit context-aware spatial awareness,
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simulating the movement of an inspector performing a walkthrough across multiple levels. Unlike flat
navigation seen in most virtual RL environments, this requirement introduced the complexity of
discontinuous geometry and limited visibility, both of which are critical in the simulation of a realistic
building inspection workflows. Success would be indicated by the agent’s ability to transition between
at least two or more floors in a single episode and detect hazards at different vertical elevations.

e Spatially diverse hazard detections

An additional expectation was drawn from safety management practice and exploration-based RL
strategies. To ensure that the learned behaviours were generalizable and not over fitted to localised zones
that were highly rewarded, the agent was expected to distribute its detection across the entirety of the
environment. The criterion reflects the broader reinforcement learning goal of state-space exploration
and is also grounded in the logic of safety inspections, where comprehensive site coverage is necessary
for reliable risk assessments. It was expected that, post-training, the agent’s traversal patterns would
demonstrate wide spatial coverage, including corner zones, narrow corridors and less frequently
accessed regions of the model.

e Hazard interaction logging for reporting

To support downstream interpretability and potential integration with stakeholder workflows, the
simulation was expected to include a procedural logging system for hazard-related interactions. This
logging was intended to capture events such as ledge entry, falling actions, stair transitions and spatial
coverage metrics in structured formats (e.g., .csv, .json). These structured outputs were envisioned as a
foundation for future safety analysis workflows, including post-run inspection visualisations and
automated safety reporting tools. The inclusion of such logging capabilities was framed as essential to
bridge autonomous behaviour with practical applications in construction safety review and planning.

4.1.2. Performance Targets

In addition to the qualitative goals outlined above, several hypothetical quantitative performance targets
were defined to measure the RL agent’s effectiveness. These targets were not formal pass or fail criteria.

e Hazard discovery rate

The agent was expected to detect a majority it the hazards present in the environment during each
episode after training convergence. An ideal benchmark was set at 80%, aligning with practical
expectations equivalent to effective human inspection performance carried out under constrained time
conditions. However due to the absence of labelled hazard zones in the environment, this target served
as an informal reference rather than a strict quantitative metric.

e Coverage efficiency

To avoid over fitting to frequently visited areas, the agent was expected to exhibit spatially balanced
behaviour. This meant achieving a low redundancy rate in hazard detection. Basically, this meant that
there should be a limited number of repeated detections of the same hazard and demonstration of a broad
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area coverage in each episode. Diversity in traversal paths was treated as a proxy for comprehensive site
evaluation. No more than 20% of detections could originate from the same zone.

e Multi-level access rate

The agent was expected to traverse stairs and detect hazards on different floors in at least 70% of
episodes. This target was based on the assumption that safety inspections in actual construction sites
cannot be limited to a single plane and must assess vertical transitions where hazards like fall risks are
often most pronounced.

o Detection speed (Convergence Rate)

As training progressed, the agent was expected to identify its first hazard in less time, indicating learning
convergence. A decreasing trend in the number of steps to first detection would suggest improved
navigation efficiency and growing familiarity with the environment layout, reward structure and hazard
cues.

Together, these performance targets and functional expectations would be used in the assessment of an
RL-based hazard detection system within a BIM-derived construction environment. By prioritizing
autonomous risk discovery over avoidance or survival, the study hoped to introduce a new framing for
RL application in construction safety simulation, one that bridges the gap between digital models and
proactive risk assessment tools.

4.2. Evaluation of Outcomes and Learned Behaviours

This section presents a consolidated evaluation of the RL agent’s behavioural outcomes during training
and simulation. The analysis integrates both fully and partially achieved expectations, structured
according to the project’s initial design goals outlines in Section 4.1. Each behavioural trait is examined
in light of observed evidence from the simulation, with attention to how closely performance aligned
with intended safety inspection logic. Any deviations for expected outcomes are noted directly, while
broader implementation limitations are addressed in the later sections.

Before presenting the results, it is essential to clarify the structure of each simulation episode, as the
agent’s behaviour and rewards are analysed primarily on an episode-by-episode basis. In reinforcement
learning, an episode refers to a complete cycle of agent interaction with the environment, beginning at
spawn and ending upon reaching a termination condition. In the present simulation, each episode
terminates when any one of the following conditions is met:

e The agent falls from a platform or ledge (detected via grounded state or vertical position
change).

e The agent is stuck for a predefined duration (i.e., it fails to move significantly within a fixed
time window).

e Areward timeout is triggered (i.e., no reward has been collected within a sustained number of
frames).
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e The agent reaches the maximum number of steps per episode, which is generally capped to
prevent excessively long simulations.
e A manual reset is triggered via the control script or during debugging sessions.

Each step within an episode corresponds to one physics frame processed by the Godot engine, typically
running at a rate of 30 frames per second. Therefore, an episode with 300 steps would last approximately
10 seconds in real time.

The following table summarises key aspects of episode execution:

Table 2 — Summary of Key Aspects of Episode Execution

Parameter Description

Step Unit One physics frame (=1/30th of a second)

Fall, stuck timeout, no reward, max steps reached, or

Episode Termination
manual reset

600 steps per episode (=20 seconds of simulated

Typical Max St .
ypical Max Steps time)

Agent action (move/turn), environment update,

Step Content
reward assessment

Total reward, step count, zones explored, and

Episode Data L d
p1sode Data Logge whether first reward occurred

This structure provides the foundation for interpreting episode-level trends, such as cumulative rewards,
behavioural convergence, and frequency of hazard interaction, which are examined in detail in the
sections that follow.

4.2.1. Trial 1: Initial Implementation and Observed Behaviour

The first trial run of the simulation served as a critical diagnostic phase for evaluating the performance
of the reinforcement learning (RL) agent within the partially constructed 4D BIM environment. This
run generated rich behavioural logs across 20 episodes, which were recorded at three levels: (1) episode-
level summaries (total reward, steps taken, and zone discovery), (2) per-step movement and reward data,
and (3) event-driven episode termination reasons. A truth-based review of these logs uncovered both
promising emergent behaviour and critical implementation faults.

e Episode-Level Reward Patterns
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Table 3 presents a sample of the raw logs on that were derived from each episode, capturing total reward,
steps taken, whether a first reward was recorded and how many new zones were explored.

Table 3 — Episode Summary Log Extract from Initial Trial Run

Episode Reward Steps First Reward Zones Explored
1 27.45 263 v True 1
2 1.03 231 v True 0
3 25.08 221 v True 0
4 22.59 599 v True 0
5 1.22 234 v True 0

The logged reward summaries indicated a wide variance in performance across episodes, with total
rewards ranging from as low as —1.41 to as high as +56.66 in the compressed logs. However, deeper
frame-level analysis revealed a consistent underreporting of actual accumulated rewards. In one case,
Episode 14 was logged as +56.66 but showed a computed total reward of +6309.57 when summing
frame-by-frame rewards.

This discrepancy suggests that the logging mechanism responsible for summarising rewards at the end
of each episode was either misaligned with the true reward signal or was being reset prematurely. This
systemic mismatch undermines the reliability of the episode summary data as a standalone metric and
necessitates redesigning the summary logging function to extract the final reward directly from the
internal reward_total variable at the time of reset.

A cross-comparison between computed and logged episode rewards is shown in Table 3.

Table 4 — Computed vs Logged Episode Rewards

Episode Logged Reward  Computed Reward Discrepancy
2 1.03 1113.95 +1112.92
14 56.66 6309.57 +6252.91
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Episode Logged Reward  Computed Reward Discrepancy

19 45.43 -9,400,477.18 -9,400,522.61

As shown, all three cases exhibit extreme discrepancies. These errors are not merely numerical but have
implications for how the RL algorithm interprets success and failure across training episodes.

¢ Dominant Reward Source: Ledge Proximity Shaping

Across nearly all high-reward episodes, such as Episodes 14 and 2, the dominant contributor to reward
was not spatial exploration or falling events, but rather sustained proximity to ledges. In the case of
Episode 14, the agent exhibited stable forward movement with a constant velocity of ~1.5, while
maintaining a ledge_ratio of 1.0 for hundreds of frames. This implies that the agent had learned, through
reward shaping, to position itself consistently along hazardous ledge edges. The observed reward values
increased gradually from 0.59 to 0.61 per frame, suggesting a linear shaping function such as reward +=
ledge_ratio * k, where Kk is a scalar constant.

This behaviour supports the intended inverted logic of the environment design: the agent is incentivised
to seek out unsafe conditions rather than avoid them, mirroring real-world applications where hazard
discovery is more valuable than safe navigation. The high reward trajectory, consistent movement, and
lack of manual input confirm that the RL controller was actively driving the agent toward optimised,
risk-seeking paths.

e Failure Case: Catastrophic Reward Spiral

One of the most revealing observations came from Episode 19, where the computed reward reached an
extreme negative value of —9,400,477.18. The terminal phase of this episode showed a reward decrement
of ~—433.24 per frame, caused by a runaway shaping loop that failed to cap or terminate appropriately.
The agent remained positioned at a low elevation (position_y = 0.4) with ledge_ratio = 1.0, indicating
it was trapped at the edge of a fall but never triggered the fall event. Meanwhile, its velocity_len
remained just above the stuck detection threshold (between 0.47-0.57), keeping it in a loop where it was
penalised continuously without initiating a reset.

Table 4 illustrates a sample of the frame-by-frame penalties:

Table 5 — Reward Penalty Accumulation in Episode 19 (Final Frames)

Step Velocity Ledge Ratio Reward Delta

43870 0.47 1.0 -433.24
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Step Velocity Ledge Ratio Reward Delta
43871 0.52 1.0 -433.25
43872 0.57 1.0 -433.26
43873 0.52 1.0 -433.27

This behaviour exposed two critical system design flaws. First, the reward function lacked upper and
lower clamping mechanisms (clamp (reward, MIN, MAX)), allowing runaway reward accumulation.
Second, the stuck recovery logic was not activated (stuck_phase = 0.0 throughout), suggesting that either
the movement delta or timer thresholds were too lenient, or the escape strategy was insufficiently
triggered. This episode underscores the importance of safety bounding in reward systems, especially in
environments with persistent negative feedback loops.

e Short Burst Reward Exploits

Another notable pattern emerged in Episode 2, where the agent achieved +1113.95 reward over just 231
steps. This short episode demonstrated highly efficient exploitation of the ledge reward loop: the agent
quickly moved into a high ledge_ratio region (from 0.75 to 1.0 within five steps), then remained there
for the rest of the episode. Unlike Episode 19, the reward remained positive and bounded, indicating
that the reward logic for hazard proximity was functioning correctly under short-lived circumstances.
This episode also suggests that the agent has begun learning to exploit specific spatial patterns for fast
reward collection, without exploring new zones or attempting vertical transitions.

e Zone Discovery and Exploration Behaviour

Despite high reward episodes, zone exploration remained largely absent. The zones_explored value was
0 for 18 out of 19 episodes, with a maximum value of 1 observed only once. This signals a structural
disconnect between exploration mechanics and reward shaping. Given that the spatial exploration
mechanism is designed to reward agents for discovering unvisited areas, its absence in these trial runs
suggests that either:

Exploration zones were not placed in regions accessible by early policies,

The agent is prematurely attracted to nearby ledges and does not continue beyond them,
The reward signal for zone discovery is insufficient to outweigh ledge-related
incentives.

Table 5 summarises the exploration metric:

Table 6 — Zone Discovery Statistics across Episodes
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Metric Value
Total Episodes Logged 20
Average with >0 Zones 1
Maximum Zones Explored 1
Average Zones per Episode 0.05

The trial data therefore highlights an imbalance in the current reward schema, where the hazard-seeking
reward overshadows exploratory incentives. This will need to be addressed in subsequent training
iterations to improve spatial coverage and emergent navigation diversity.

In summary, the first trial run confirmed that the RL agent can learn to exploit consistent, high-reward
behaviours such as ledge proximity, even without manual control or path heuristics. The run also
exposed critical implementation flaws, including reward logging inconsistencies, uncapped shaping
functions, and dormant stuck detection. The agent's ability to seek out and remain in high-danger states
confirms that the intended inverted reward logic is operational. However, spatial exploration and floor
transitions were not meaningfully triggered, and zone-based rewards were underrepresented. These
observations offer a concrete roadmap for improvement, including clamping reward values, debugging
zone discovery triggers, and revisiting the stuck recovery thresholds in the movement logic.

4.2.1.1. Emergent Behaviour Patterns: Progress over time (First Trial Analysis)

In addition to analysing emergent behaviour within individual episodes, the first trial run offers insight
into the agent’s overall learning progression across time. This section evaluates temporal trends in
reward acquisition, behavioural consistency, and training stability as reflected in episode-to-episode
metrics.

The frame-level logs and reward summaries demonstrate that the agent exhibited increasing competency
in identifying and exploiting high-reward behaviours, particularly in relation to ledge exposure. While
early episodes (e.g., Episodes 1-3) show modest gains in reward accumulation and shorter durations,
later episodes such as 13-16 illustrate a clear upward trajectory in both episode length and cumulative
reward totals. Table 6 presents a selection of episodes in chronological order, with key performance
metrics extracted.

Table 7 — Progression Summary across Key Episodes

Joint Master Degree Programme

European Master in Building Information Modelling BIM A+ 45



Exploring agent-based models for construction planning using partial 4D BIM models

) Computed Total Reward per
Episode  Steps Taken Zones Explored
Reward Step
1 263 214.11 1 0.81
2 231 1113.95 0 4.82
14 740 6309.57 0 8.52
15 739 6155.92 0 8.33
16 730 1565.40 0 2.14

Episodes 14 and 15 not only display longer survival times but also higher reward-per-step ratios,
implying both strategic persistence and reward efficiency. In contrast, earlier episodes achieved less
with fewer steps and lower reward density. This trend supports the hypothesis that the RL model was
successfully reinforcing beneficial policy pathways as training progressed. Notably, even though some
anomalies such as Episode 19 (catastrophic penalty) skew the reward scale, a smoothing or median-
based line would still reveal an upward movement in agent competency.

It is also worth noting that zone exploration did not improve concurrently. Despite gains in reward
exploitation, the agent remained spatially stagnant. This is consistent with findings from Section 4.2.1
and suggests that policy convergence prioritised short-term ledge-based reward maximisation over long-
term spatial navigation.

Additional markers of progress included:

e Reduction in movement erraticism, with agents displaying more consistent forward momentum
in late-stage episodes.

e Stabilisation of move_action and turn_action signals over time, with fewer oscillations.

o Increased presence of sustained ledge_ratio values near 1.0 for extended durations, indicating
purposeful alignment with known hazard boundaries.

However, these improvements occurred within a narrow behavioural domain. While temporal reward
metrics improved, exploration metrics remained flat. The lack of diversity in emergent strategies
indicates the model is prematurely converging on local optima rather than generalising across the
environment.

Over the course of the first 20 episodes, the agent demonstrated measurable progress in learning to
acquire shaped rewards. Reward per step and episode duration both increased over time, reflecting the
RL model’s adaptation to environmental cues. Nevertheless, the absence of improvements in exploration
or spatial variance highlights a critical limitation of the current reward function and observation space.
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In subsequent training iterations, more balanced incentives and environment diversity will be required
to stimulate generalizable learning trajectories.

4.2.2. Trial 2: Improvements and Extended Behaviour

Following the diagnostic insights gained during the initial training trial, the second trial introduced a
series of targeted improvements aimed at enhancing agent performance, reward consistency, and overall
behaviour robustness. These refinements were motivated by observed weaknesses in the original
implementation, such as unstable floor detection, inconsistent stuck recovery, and lack of reward
structure when episodes stagnated.

e Reward Timeout Detection and Early Episode Reset

One of the most significant additions in Trial 2 was the inclusion of a reward_timeout_timer, designed
to track inactivity in agent-environment interaction. When the agent failed to collect any meaningful
reward within a 60-second threshold, the system automatically triggered a reset, tagging the episode
with a reset_reason = "NoRewardTimeout".

reward timeout timer += _delta

Figure 15 - Reward Timeout Logic in Agent Controller

This improvement proved effective in terminating unproductive training sessions early, thereby
conserving computational resources and reducing the reinforcement of non-informative behaviours.

if reward timeout timer > reward_timeout threshold:
print("@ No reward detected for 60s — terminating episode early.")
done = true

needs_reset = true

_player.reset_reason = "NoRewardTimeout™

Figure 16 — Reset Trigger Based on NoRewardTimeout Condition

This mechanism directly addressed the issue of the agent entering non-rewarding exploration loops or
remaining idle due to navigation bottlenecks—both of which had been observed in Trial 1. Additionally,
each time the agent successfully collected a reward, the timer was reset to zero:
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if reward != 0.0 and n_steps != last_reward_logged step:

last_reward logged step = n_steps

reward_timeout_timer = 0.0

Figure 17 — Reward Detection and Timeout Reset Logic

Logs from Trial 2 show a noticeable drop in episodes that reached the max_steps threshold without
collecting any reward, indicating more efficient learning sessions.

e Enhanced Logging and Observation Infrastructure

Trial 2 also introduced structured activity logging through the log_training_start(), log_episode_end(),
and log activity() functions. These additions enabled granular tracking of each episode’s lifecycle,
including start time, end reason, agent position, movement phase, and reward state. This new logging
infrastructure allowed for clearer interpretation of behavioural transitions and permitted deeper post-hoc
analysis of simulation quality. The functions are outlined in Table 7.

Table 8 — Summary of Logging Infrastructure

Function Purpose Logged File
log_training_start() Start of training session training_session_log.csv
log_episode_end() End of episode (with reason) training_session_log.csv

Step-level tracking:
log_activity() movement, reward, danger,  training_session_log.csv
etc.

Crucially, the agent’s step-by-step activity could now be examined through spatial and temporal filters,
enabling heatmap visualisation and movement pattern analysis over extended runs. These metrics were
not available in Trial 1 and added a diagnostic layer to support debugging and performance
benchmarking.

e Improved Reward Responsiveness

The get_reward() function was updated to reset the reward_timeout_timer immediately upon receiving
a non-zero reward signal. This eliminated situations where the agent was incorrectly terminated mid-
learning due to a timing mismatch in reward registration. In Trial 1, this logic was either absent or
inconsistently applied, which sometimes led to false-positive resets.
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Additionally, logs indicate that Trial 2 featured more frequent positive reward spikes across episodes.
While some of these were still driven by falls from hazardous ledges (which are intentionally rewarded
in this model), the improved reward loop responsiveness contributed to a clearer shaping of learning
episodes and better training convergence over time.

e Improved Handling of Stuck States

Although stuck phase tracking existed in Trial 1, Trial 2 featured better differentiation of stuck_phase
transitions and logging. More importantly, the agent exhibited more frequent recovery from stuck
states—reflected in declining average stuck duration across episodes. This was partially facilitated by
the adjusted reward structure, which penalised prolonged inactivity or repeating the same spatial zones.

Furthermore, the internal logic to monitor stuck _timer normalisation and apply phase-sensitive recovery
strategies appeared to be more robust in the updated implementation, even though no entirely new escape
strategy was introduced.

e Lowered Maximum Step Threshold for Episodes

Another design change in Trial 2 was reducing max_steps from 300,000 (Trial 1) to 150,000. This shift
was intended to tighten the feedback loop between agent action and environment response, forcing
quicker exploration strategies. The reduced threshold was complemented by higher activity log density,
which allowed more training variation to be observed in fewer steps.

e Continued Weaknesses

Despite the improvements, several limitations persisted. In some runs, zone re-entry penalties were
insufficient to fully discourage spatial looping. While the reward timeout reset was effective, it did not
always correspond to genuine behavioural failure as some premature resets still occurred during
legitimate exploration in sparse areas.

4.2.3. Comparative Progress between Trial 1 and Trial 2

The progression between Trial 1 and Trial 2 represented not only a change in the agent’s behaviour but
a meaningful evolution in the simulation’s architectural sophistication and reward system maturity.
Although both trials were grounded in the same high-level objective; enabling an RL agent to identify
hazard zones in a multi-storey construction environment, the underlying mechanisms, sensor
integration, and reward logic saw significant changes. These influenced the pace, nature, and
consistency of learning.

4.2.3.1. Behavioural Differences and Learning Efficiency

In Trial 1, the agent initially exhibited repetitive movement patterns, with many episodes ending
prematurely due to a lack of reward signal or repeated zone visits. Exploration was often shallow, with
fall back behaviours such as rotation loops and idle stuttering. Although some fall-based rewards were
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recorded, they were inconsistent and unaccompanied by other meaningful exploration metrics such as
diverse zone discovery or floor-level transitions.

By contrast, Trial 2 saw an emergence of significantly more structured behaviour. Notably:

The average number of steps per episode increased (from under 100 in early Trial 1 logs to over
300+ in Trial 2), indicating longer and more productive exploration runs.

The zone revisit penalty introduced in Trial 2 encouraged spatial diversity, reflected in more
unique explored_zone entries per episode.

The reward frequency stabilised due to the introduction of a reward_timeout timer, which
enforced early resets if the agent failed to trigger a reward within 60 seconds. This prevented
idle roaming and encouraged continuous behaviour experimentation.

Stuck detection and smooth turning were refined in Trial 2, resulting in fewer hard resets and
more frequent recovery phases. In earlier logs, stuck states would quickly result in termination,
whereas in Trial 2, the agent attempted corrective motion including reversal, smooth rotation,
and re-navigation.

4.2.3.2. Script-Level Enhancements and their Impact

Comparing the AlController3D.gd scripts revealed key modifications between trials that directly
influenced observed learning behaviour:

Table 9 — Script Enhancements

Mechanism Trial 1 Trial 2

reward_timeout_timer Absent Present — resets idle episodes
log_activity() Absent Added per-frame CSV logging
log_episode_end(reason) Not included Introduced for better event tracking

stuck_phase tracking

Present but limited

Improved with smoother transitions

max_steps

300,000

150,000 (more aggressive resets)

Exploration reward

Present but basic

Refines with revisit penalties

These changes enabled the agent in Trial 2 to escape problematic areas more intelligently, explore novel
locations more consistently, and stabilise its learning curve over time.
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4.2.3.3. Outcome Comparison Based on Logs

An analysis of the episode logs supports these script-level conclusions:

Trial 1 logs showed multiple episodes with total rewards of 0.0 or very low values (< 1.0),
suggesting unproductive exploration.

Trial 2 logs displayed higher average rewards per episode, more zones visited, and steadier step
counts across multiple trials. This indicates improved generalisation and more robust hazard-
seeking behaviour.

In both cases, the use of multi-ray ledge sensors played a central role in shaping the reward outcomes.
However, in Trial 2, the improved handling of ledge_miss_ratio and more nuanced reward shaping (e.g.,
based on fall height) translated into more consistent falls from higher floors, confirming the simulation’s
intended design logic.

4.2.3.4. Emergent Patterns Unique to Trial 2

Importantly, Trial 2 introduced behaviour that was not observed in earlier simulations:

Loop-breaking logic: The timeout mechanism implicitly discouraged cyclical movement
patterns, and reward heatmaps confirmed a wider spatial spread of activity.

Real-time logging: The addition of detailed CSV logs allowed deeper post-analysis and
highlighted trends such as fall frequency, movement angle preferences, and floor-level
variations.

Hazard validation: By logging not just the fall but the distance of the fall and its context (e.g.
stair vs ledge), Trial 2 enabled clearer segmentation of "intentional" hazard-seeking behaviours
vs accidental ones.

Table 10 — Comparison Table

Trial 2 (Extended

Feature/Metric Trial 1 (Early Training) -
Training)

Average Steps per Episode 50-150 250-350+

Average Zones Explored per 1-2 3-5+

Episode

Reward Timeout Handling None Reward timeout resets idle
episodes

Activity Logging Limited Continuous with
timestamps

Joint Master Degree Programme

European Master in Building Information Modelling BIM A+ 51



Exploring agent-based models for construction planning using partial 4D BIM models

Trial 2 (Extended

Feature/Metric Trial 1 (Early Training) ..
Training)

Ledge Detection Logic Present Refined with multi-ray
arrays

Fall Reward Granularity Basic fall trigger Fall height-sensitive
shaping

Zone Revisit Penalties None Penalty applied for
duplicate entries

RL controls dominate (no All movement derived from RL policy Achieved

manual input during trial) outputs (move_action, turn_action)

4.3. Actual Achievements vs Initial Goals

This section offers a direct comparison between the project’s anticipated goals and the concrete results
observed during simulation trials. Drawing from the outlined expectations in Section 4.1 and the verified
outcomes discussed in Section 4.2, each objective is examined in terms of its successful implementation,
partial fulfilment, or deviation from intended behaviour. This structured assessment ensures
transparency in how the reinforcement learning agent performed relative to initial aims.

e Hazard-Seeking Behaviour

Goal: Encourage the agent to actively discover hazardous zones such as ledges and open edges,
rewarding falls from greater heights.

Outcome: Achieved. The agent consistently received positive reward signals when falling off ledges,
especially from higher elevations. Fall-triggered reward shaping was operational across both trials, with
logs confirming appropriate reward_total adjustments aligned with ledge_ratio and vertical velocity
readings.

e Multi-Floor Navigation via Falling

Goal: Enable the agent to traverse multiple floor levels primarily through unguarded drops, while
optionally using stairs.

Outcome: Achieved. In both trials, agents successfully transitioned between floors, most often through
falling. The addition of last_floor_level tracking confirmed multiple floor transitions per episode.
Although stair usage was infrequent, the agent’s capacity to descend via hazardous paths aligned with
the intended behaviour.

e Exploration Diversity
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Goal: Reward agents for entering unexplored areas while penalising repeated visits to known zones.

Outcome: Achieved. The explored_zones dictionary effectively tracked agent movement across spatial
segments, and ZonesExplored logs confirmed a consistent increase in unique zone entries during Trial
2. In addition, zone revisit penalties shaped more diverse trajectories over time.

e Stuck Detection and Recovery
Goal: Detect navigation bottlenecks and recover through backup and turning strategies.

Outcome: Partially achieved in Trial 1; fully achieved in Trial 2. While the first trial occasionally
transitioned into higher stuck phases without resolution, the second trial introduced smoother recovery
logic using interpolated turns and a reward_timeout_timer to end unproductive episodes. Logs confirm
more consistent stuck phase exits and longer uninterrupted movement sequences in Trial 2.

e Ledge Detection and Danger Estimation

Goal: Use raycast-based sensing to detect ledge proximity and increase agent caution or reward
depending on context.

Outcome: Achieved. The use of ledge_ray_data, ledge_danger, and ledge_miss_ratio in the observation
dictionary allowed agents to perceive edge conditions. These values influenced reward feedback
appropriately, with fall-triggered rewards often preceded by increased ledge danger readings.

e Reward Shaping and Training Responsiveness
Goal: Adjust rewards dynamically to reinforce desirable behaviours and penalise ineffective patterns.

Outcome: Achieved. Trial 2 showed more stable and interpretable reward patterns due to the inclusion
of reward_timeout_timer, zone revisit penalties, and smoothed movement. The agent was able to
distinguish between productive and non-productive behaviours, as reflected in reduced episode variance
and more coherent learning patterns over time.

e Simulation Logging for Evaluation
Goal: Generate usable logs (.csv) for analysis of agent activity, reward, zones, falls, and stuck states.

Outcome: Achieved. Trial 1 focused on episode summary logs, while Trial 2 extended functionality
with real-time log_activity() and log_episode_end() events. These logs enabled deeper comparative
analysis across trials and support reproducible evaluation of training behaviour

4.4. Results Interpretation

The results obtained from the two simulation trials provide valuable insights into the behavioural
progression of a reinforcement learning (RL) agent deployed in an unfinished, partially modelled 4D
BIM environment. This section reflects on the practical implications of those results, emphasising the
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role of environment design, reward logic, and agent adaptability in achieving meaningful learning
outcomes.

A prominent theme across the training logs and observations was the agent's emergent ability to
prioritise behaviour that aligned with risk discovery, despite the absence of manually defined goal points
or routes. In Trial 1, the agent exhibited irregular exploration, with frequent reset triggers due to lack of
movement or repeated zone re-entry. However, by Trial 2, the agent was consistently registering reward
events across a broader set of spatial zones, while demonstrating smoother transitions across elevation
levels. This progression reflects a measurable shift from random roaming to policy-driven exploration.
For instance, the successful use of ledge proximity as a learning signal enabled the agent to not only
seek fall opportunities but to actively modify its pathfinding strategy when ledge sensors detected high
risk. Unlike deterministic navigation scripts, the RL-driven behaviour became increasingly adaptive as
it is capable of recovering from stuck states, seeking unexplored terrain, and reducing unnecessary re-
entry into zones already traversed. This behavioural maturation underscores the effectiveness of
reinforcement signal shaping as a substitute for fixed path design. By carefully weighting fall distances,
spatial novelty, and recovery actions, the learning model was steered toward high-risk discovery zones
without dictating specific motion paths.

A secondary implication arises from the observation that simulation architecture, specifically reward
definitions and sensor inputs, played a central role in shaping what the agent learned. Trial 2’s
architecture introduced refined mechanisms such as the reward_timeout_timer, episodic logging, and
tighter zone-revisit penalties, which directly contributed to the suppression of unproductive behaviours
(e.g., turning loops, idle roaming). Moreover, the use of continuous raycast arrays (including ledge ray
misses) to quantify local danger was instrumental in enabling situational awareness. The
ledge_miss_ratio, calculated from downward-pointing sensors, provided a scalar danger estimate that
dynamically adjusted the agent’s movement decisions. The agent learned to treat high-miss regions as
opportunities for fall-triggered rewards, but with increasing caution and hesitation which was a subtle
but important balance between exploration and risk exposure.

These findings reinforce that the simulation’s feedback model, rather than the visual fidelity or
geometric complexity of the environment, was the most critical enabler of intelligent exploration. Each
new reward function introduced in the environment acted not merely as a performance metric but as a
learning attractor. The agent’s improved navigation and hazard-seeking behaviour is therefore not only
a product of learning algorithm convergence, but a reflection of carefully curated interaction rules.

The practical implications of these findings extend to the field of safety-informed construction planning.
In real project contexts, early-phase inspection and hazard prediction are limited by the lack of real-time
behavioural testing tools. The results from this simulation suggest that RL-enabled agents can augment
traditional 4D BIM workflows by providing dynamic feedback on unsafe zones, not as static annotations
but as behaviourally confirmed danger hotspots.

Unlike rule-based simulations, RL agents can autonomously determine where risk is concentrated by
learning from the consequences of their own actions. This offers a scalable pathway to deploy hazard-
seeking agents into various construction configurations, particularly when phasing sequences are
incomplete or under revision. The capacity for such agents to highlight overlooked drop-offs,
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inaccessible stair transitions, or dangerous route bottlenecks could support both safety design reviews
and digital site audits.

Furthermore, the improvements noted in Trial 2, particularly in terms of activity logging, fall height
validation, and early reset triggers, suggest that this simulation architecture can serve as a training
framework for safety-focused digital twins. Stakeholders could iteratively test different spatial layouts,
floor plans, or scaffold placements and use agent feedback to rank their relative hazard exposure. This
elevates BIM from a representational system to a behavioural testbed capable of informing pre-emptive
decision-making.
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5. CONCLUSION

This dissertation set out to explore how reinforcement learning could be applied to construction safety
by embedding hazard-seeking agents in a 4D BIM-derived simulation environment. The research
journey followed a structured path, beginning with an introduction that defined the motivation to
combine BIM, game engines, and reinforcement learning as a means of identifying unsafe conditions
during the early phases of construction planning. The literature review then provided the theoretical
foundation, mapping out the existing state of knowledge on BIM for safety, 4D BIM for planning and
simulation, and the emerging role of reinforcement learning as a driver of autonomous hazard discovery.
Following this, the methodology chapter outlined the technical pipeline developed to implement this
concept, from model preparation and game engine environment setup to reinforcement learning
integration and reward-shaping logic. The results chapter then presented the first set of simulation
outcomes, analysed trial runs, and compared the expected objectives with the actual behaviours that
emerged.

The findings demonstrate that the reinforcement learning agent was capable of internalising reward
signals and converging towards strategies that maximised hazard-related rewards. In practice, this meant
that the agent consistently aligned itself with ledges and unsafe edges, thereby achieving the
fundamental design aim of simulating hazard discovery. The logs confirmed that policy-driven control
dominated behaviour, with no reliance on heuristic overrides. However, the results also revealed
important shortcomings. The agent did not meaningfully explore beyond initial spawn zones, did not
use staircases for vertical transitions, and largely ignored other aspects of the spatial environment.
Instead, it converged prematurely on a narrow but efficient behaviour: remaining near hazards for
extended periods to collect steady rewards.

These results open questions about how best to balance exploration and exploitation in safety-focused
reinforcement learning simulations. While the current configuration succeeded in validating the concept
of inverted reward logic, it also highlighted that a reward structure overly weighted towards ledge
proximity can suppress other important behaviours. The lack of stair usage, minimal zone exploration,
and the failure to differentiate hazard types suggest that the current environment design needs further
refinement. In particular, future work should consider adjusting reward weighting, diversifying hazard
signals, and introducing stronger incentives for movement across multiple floors and spatial regions.

Another open question is the extent to which these results can generalise beyond the current
experimental environment. The agent successfully demonstrated hazard-seeking within a controlled
BIM-derived model, but real construction sites are far more complex and dynamic. Further work is
needed to test whether the same reinforcement learning framework can adapt to larger, more detailed
models, and whether hazard-seeking agents can support proactive planning at scale. Importantly, time
restrictions did not allow for the exploration the long-term learning capacity of the agent over hundreds
or thousands of training episodes. As such, the outcomes reported here reflect early-stage behaviour,
and longer training cycles may reveal more diverse or generalizable policy patterns.
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Looking ahead, several suggestions for future development can be made. Refinements to the simulation
should prioritise more balanced reward functions, improved logging accuracy, and validation of
exploration metrics. Testing longer training runs and more diverse spawn conditions may also help avoid
premature policy convergence. On the methodological side, integrating more complex hazard
categories, such as moving objects, temporary scaffolding, or equipment interactions, would create
richer learning opportunities. Beyond the experimental phase, extending the framework into
visualisation tools for site managers, or embedding the results into planning workflows, could
significantly enhance the usability of this approach.

Ultimately, the work carried out in this dissertation demonstrates both the potential and the current
limitations of applying reinforcement learning to BIM-enabled safety simulations. It confirms that
hazard-seeking agents can autonomously identify unsafe spatial conditions when guided by well-
designed reward functions, but also shows that careful calibration is necessary to avoid narrow and
repetitive behaviours. While the first trial run revealed gaps in exploration and navigation, it also
established a functioning baseline environment that can be refined in subsequent research. The results
are usable both as a proof of concept and as a roadmap for iterative development, providing a foundation
for future work aimed at making digital safety simulations more adaptive, realistic, and valuable to
construction planning practice.
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APPENDICES

APPENDIX 1: AICONTROLLER3D.GD - RECORDS SESSION
START - LOG_TRAINING_START()

func log_training_start():

var session_path := "user://training_session_log.csv"

# Create log file with headers if not already there

if not FileAccess.file_exists(session_path):
var file := FileAccess.open(session_path, FileAccess. WRITE)
file.store_line("Event,Episode, Timestamp,Details")
file.close()

var file := FileAccess.open(session_path, FileAccess. READ_WRITE)

if file:
file.seek_end()
var timestamp = Time.get_datetime_string_from_system()

file.store_line("TrainingStart,%d,%s,Batch RL training session started" %
[episode_count, timestamp])

file.close()

else:

push_error("X Could not open session log for writing.")
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APPENDIX 2: AICONTROLLER3D.GD - RECORDS END OF
EACH EPISODE - LOG_EPISODE_END()

func log_episode_end(reason: String = "NormalEnd"):
var session_path := "user://training_session_log.csv"

var file := FileAccess.open(session_path, FileAccess.READ WRITE)

if file:
file.seek_end()
var timestamp := Time.get_datetime_string_from_system()
file.store_line("EpisodeEnd,%d,%s,%s" % [episode_count, timestamp,
reason])
file.close()
else:

push_error("X Could not write episode end to session log.")
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APPENDIX 3: AICONTROLLER3D.GD - TRACKS STEP-BY-
STEP BEHAVIOUR: LOG_ACTIVITY()

func log_activity(step: int, pos: Vector3, vel: Vector3, phase: int, move: float, turn: float,
step_reward: float, ledge_ratio: float):

if not activity log_initialized:
var file := FileAccess.open(activity_log_path, FileAccess.WRITE)
if file:

file.store_line(""Step,PosX,PosY,PosZ,VelX,VelY,VelZ,Phase,Move, Turn,Reward,Ledge
Ratio™)

file.close()
activity _log_initialized = true
else:
push_error("X Could not initialize episode summary CSV file.")
var file ;= FileAccess.open(activity log_path, FileAccess.READ_WRITE)
file.seek_end()
var line := "%d,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%d,%.2f,%.2f,%.3f,%.2f" % [
step,
pOS.X, P0S.y, p0s.Z,
vel.x, vel.y, vel.z,
phase,
move,
turn,
reward,

ledge_ratio
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