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RESUMO 

Título traduzido: Exploração de Modelos Baseados em Agentes para o Planeamento da Construção 

Usando Modelos Parciais 4D de BIM 

A indústria da construção continua a enfrentar desafios relacionados com riscos de segurança espacial, 

em particular em contextos onde pavimentos, barreiras e transições estruturais permanecem 

incompletos. Embora o Building Information Modelling (BIM) ofereça uma base digital para a 

coordenação espacial, frequentemente carece de inteligência incorporada capaz de identificar 

autonomamente condições perigosas em obra. Esta dissertação explora a integração do reinforcement 

learning (RL) com modelos parciais de 4D BIM num ambiente de motor de jogo, de forma a simular 

um agente inteligente capaz de navegar, perceber e interagir autonomamente com elementos espaciais 

perigosos. 

Foi desenvolvido um ambiente de simulação personalizado utilizando o Godot Engine, no qual foi 

importada geometria parcialmente construída derivada de modelos BIM. O ambiente apresenta 

condições de risco frequentemente associadas a acidentes por queda, tais como beirais abertos, vazios e 

caixas de escadas. Um agente único foi treinado através do Proximal Policy Optimization (PPO), com 

perceção baseada em sensores e uma função de recompensa concebida para promover a interação com 

transições inseguras. Ao contrário de estruturas convencionais baseadas na sobrevivência, este projeto 

inverteu a lógica: a queda foi recompensada e não penalizada, incentivando o agente a simular um 

comportamento de procura de perigos em vez de evitamento. A simulação teve como objetivo explorar 

a viabilidade de utilização de agentes RL como inspetores digitais de segurança capazes de identificar 

elementos inseguros sem recurso a etiquetagem semântica prévia. As expectativas principais incluíram 

a navegação entre múltiplos pisos, uma exploração espacial diversificada e a aprendizagem de políticas 

orientadas para riscos. Os resultados indicaram que, após o treino, o agente conseguiu aprender a 

atravessar geometria complexa e a interagir repetidamente com perigos não etiquetados utilizando 

apenas entradas de sensores de baixo nível e feedback ambiental. 

Esta investigação oferece uma nova perspetiva sobre a aplicação do reinforcement learning na simulação 

de segurança em construção, reposicionando os agentes de executores de tarefas para exploradores 

diagnósticos. Destaca ainda o potencial da combinação entre BIM e sistemas de agentes inteligentes 

para apoiar o planeamento proativo da segurança em ambientes digitais de construção. 

Palavras chave: Building Information Modelling (BIM), Deteção de Perigos, Motores de Jogo, 

Planeamento da Construção, Reinforcement Learning 



Exploring agent-based models for construction planning using partial 4D BIM models 

 

European Master in Building Information Modelling BIM A+ vi 

ABSTRACT 

The construction industry continues to grapple with spatial safety risks, particularly where floors, barrier 

and structural transitions remain incomplete. While Building Information Modelling (BIM) offers a 

digital foundation for spatial coordination, it often lacks embedded intelligence capable of autonomously 

identifying hazardous site conditions. This dissertation explores the integration of reinforcement 

learning (RL) with partial 4D BIM models in a game engine environment to simulate an intelligent agent 

capable of autonomously navigating, perceiving and interacting with hazardous spatial features. 

A custom simulation environment was developed using the Godot Engine, into which partially 

constructed BIM-derived geometry was imported. The environment features hazardous conditions often 

associated with fall-related accidents such as open ledges, open voids and stairwells. A single agent was 

trained using Proximal Policy Optimization (PPO), with sensor-based perception and a reward function 

designed to promote interaction with unsafe transitions. Departing from conventional survival-based 

frameworks, this project inverted the logic: falling was rewarded and not penalised which encouraged 

the agent to simulate hazard-seeking rather than avoidance. The simulation aimed to explore the 

feasibility of using RL agents as digital safety inspectors capable of identifying unsafe features without 

prior semantic tagging. Key expectations included multi-floor navigation, spatially diverse exploration 

and hazard-focused policy learning. Results indicated that, after training, the agent could learn to to 

traverse complex geometry and repeatedly interact with unlabelled hazard using only low-level sensor 

input and environmental feedback. 

This research offers a novel framing of reinforcement learning in construction safety simulation, 

repositioning agents from task-executors to diagnostic explorers. It highlights the potential of combining 

BIM and intelligent agent systems to support proactive safety planning in digital construction 

environments.  

 

 Keywords: Building Information Modelling (BIM), Game Engines, Hazard Detection, Reinforcement 

Learning, Safety Planning 
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1. INTRODUCTION 

According to the International Labour Organization (ILO, 2023), more than 20% of occupational 

fatalities worldwide are construction-related. The construction industry remains one of the most 

hazardous sectors globally, as workers are frequently exposed to dynamic site conditions, heights and 

heavy machinery. Despite notable advancements in legislations and safety management systems, the 

early detection and mitigation of hazards during the project planning stages continue to be a persistent 

challenge (Hinze, 2006; Guo et al., 2020).  

The ongoing digital transformation within the construction industry has positioned Building Information 

Modelling (BIM) as a cornerstone technology. This is due to its ability to provide a digital representation 

of built assets that is data-rich and in turn supporting the integration of scheduling, cost, and performance 

data throughout the asset lifecycle (Eastman et al., 2011; Bryde et al., 2013). Its application during 

design and planning stages has led to improvements in coordination, clash detection and construction 

logistics. Importantly, BIM has also opened new avenues for embedding safety considerations earlier in 

the project timeline, particularly through 4D BIM, which links model elements to time-based 

construction sequences (Wang, Chong and Zhang, 2016). 

To fully appreciative the level of potential of BIM in regard to safety planning, it is prudent to first 

reflect on the practices that were previously undertaken. Traditionally, safety planning was 

predominantly based on reactive pre-planned practices and reliance on static checklists that were subject 

to human interpretation and experience (Zhou et al., 2012; Chi et al., 2014). As Hinze (2006) notes, 

traditional safety management lacked the spatial and temporal awareness needed for proactive hazard 

identification, especially in dynamic, multi-phase projects. BIM offers new opportunities to embed 

safety planning into the digital design process (Zhang et al., 2013; Kim et al., 2013). The visualisation 

of structural and temporal data allows for earlier identification of spatial conflicts and risk-prone 

activities. Safety-related elements such as scaffolding, guardrails, and restricted access zones can be 

visualised, validated, and updated in near-real-time.  

However, many current practices are limited to static safety checks or compliance-driven rule 

applications. For example, in platforms such as Navisworks or Solibri, fall protection assessments may 

be semi-automated by predefined scripts that detect missing edge barriers or unsafe working platforms 

(Zhou et al., 2012; Dirgen Töżer et al., 2024). Consequently, despite their usefulness, these applications 

provide limited insight on how risks evolve over time or their response to environmental changes. 

Hazards such as temporary voids, partial staircases or incomplete access paths may go undetected until 

construction is already in progress (Amer et al., 2023). 

Prior research has explored the application of BIM for automated identification of hazards. For instance, 

a system was developed for the detection of fall risks and unsafe zones by Zhang et al. (2013) and Kim 

and Chi (2019). While it proved effective in the visualization of hazards, the systems fell short in the 

ability to model adaptive worker behaviours simulation or emergent risks. Agent-Based Modelling 

(ABM), which offers decentralized simulations of worker-environment interactions (Bonabeau, 2002; 
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Lu & Olofsson, 2014), addresses some of the limitations but due to its assumption of deterministic 

behaviours, limits realism. Reinforcement Learning (RL), a subfield of artificial intelligence, address 

the limitations mentioned above by allowing agents to learn optimal behaviours through interaction with 

the environment and guided by a system of rewards and penalties (Sutton and Barto, 2018). In the 

construction context, Guan et al. (2021) and Lee et al. (2022) applied the navigation aspect in the BIM 

environments, but the implementation still remained isolated and rarely integrated fully with broader 

BIM workflows and evolving site conditions. Applications that train agents to explore environments in 

a bid to proactively seek, identify and interact with hazards remain scarce. Game engines such as Unity, 

Unreal Engine or Godot, enable for simulations that integrate RL with ABM and BIM presenting a 

potential for the development of intelligent and safety-aware simulations. These platforms provide real-

time physics simulation, 3D rendering and programmable agent control. These factors make them ideal 

for the testing and visualization of agent behaviour in dynamic environments (Alves and Junior, 2020; 

Fang et al., 2020). Afsari, Eastman and Shelden (2021) highlight the unique value of game engines in 

the conversion of static BIM models into interactive digital environments that support behavioural 

learning and hazard visualization.  

This dissertation proposes for the integration of BIM and RL within a game-engine environment to 

simulate proactive, behaviour-driven safety assessment in construction. Godot was chosen for this 

research and was used to host a virtual construction environment derived from a partial 4D BIM model 

enabling for the training of a reinforcement learning agent in the exploration, identification and logging 

of unsafe conditions as they emerged.  

To date, a unified framework that combines Building Information Modelling (BIM), Reinforcement 

Learning (RL) and game engine-based simulation for proactive safety assessment in evolving 

construction environments remains unexplored in both academic and practical domains. This study aims 

to address the gap by assimilating these methods into a single simulation framework that moves beyond 

static assessments toward dynamic, behaviour-driven safety planning.  

The proposed framework is not limited to navigational pathfinding but is designed to enable proactive 

hazard discovery. It seeks to simulate how intelligent agents that are trained via reinforcement learning, 

interact with incomplete and hazardous spatial conditions in construction environments derived from 

partial 4D BIM models. The ultimate intention is to identify how such agents can be used to detect high-

risk areas, including unguarded edges, incomplete floor slabs and unprotected voids, thereby supporting 

stakeholders during early-stage safety reviews and design decision-making. Unlike conventional 

training approaches, where agents are programmed to avoid danger, the agent in this study is 

intentionally trained to seek out and engage with unsafe conditions. This offers a novel lens through 

which to simulate inspection behaviour and enhance planning foresight. 

For the achievement of the research aim above, the objectives identified are as: 

 To critically review the current state of BIM, RL and simulation technologies in relation to 

simulation of construction planning and safety so as to identify gaps in addressing safety 

scenarios. 
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 To develop a technical workflow for the translation of BIM-derived spatial data into a game 

engine-based environment that has the capability of supporting autonomous agent interaction 

and hazard simulation.  

 To implement an autonomous agent capable of learning safety-aware navigation policies within 

a partially constructed 4D BIM environment, including the ability to identify and log hazardous 

conditions. 

 To evaluate the performance of the RL agent in the risks identification, measuring hazard 

detection accuracy, adaptability, and comparative safety outcomes. 

 To assess the framework's implications for proactive planning, hazard mitigation, and early 

design decision-making in real-world projects. 

 

This study explores the integration of Building Information Modelling (BIM), reinforcement learning 

(RL) and game engine-based environments within a unified simulation framework in a bid to simulate 

behaviours related to safety in a 4D environment that is partially constructed. The simulation focuses on 

the early to mid-stage structural construction where significant fall hazards caused by temporary 

conditions such as open ledges, incomplete floors and stair voids, are most prominent. 

The virtual environment will be based on simplified yet representative construction scenarios derived 

from imported BIM data and implemented in the Godot game engine. The reinforcement learning agent 

shall be trained to navigate these evolving spaces and identify unsafe features and while also using 

staircases for vertical movement. However, while stair structures are present, this work does not 

guarantee specific behaviours related to stairs (e.g., falling down a stairwell) unless explicitly 

demonstrated in the results section. 

Significantly, this research is positioned as a proof of concept. Its main objective is to demonstrate the 

feasibility and usefulness in the transformation of BIM models into playable, learnable simulations for 

proactive safety assessments. Therefore, the focus is not on the refinement or optimization of the RL 

agent’s learning parameters. Instead, rather than focusing on the agent’s training efficiency, default RL 

configurations are engaged and the agent’s behaviour is evaluated based on its interaction with the 

environment.  

Despite the proposed approach introducing a novel integration and modelling of behaviour, it is subject 

to several limitations. Due to the fact that the environment is a mere abstract, the simulation may not 

capture the complete spatial and operative complexity of real life active construction site. Limitations 

may stem from hardware and time, restricting the true scale of depth of RL agent training. Behavioural 

realism is limited as the validation of the agent behaviour occurs through simulated performance metrics 

and not through direct comparison with human site data. Additionally, the framework is primarily 

centered on fall-related hazards, excluding other risk categories such as equipment, collisions or 

handling of material. Finally, as with many efforts involving BIM, Interoperability remains a challenge 

due to the need for data translation between modelling platforms and simulation engines. 

This dissertation is structured across five main chapters, each addressing a distinct stage of the research 

process while collectively advancing the goal of simulating hazard-seeking agents in partially 

constructed BIM-derived environments. 



Exploring agent-based models for construction planning using partial 4D BIM models 

Joint Master Degree Programme  

European Master in Building Information Modelling BIM A+ 4 

Chapter 1 establishes the context, rationale and scope of the study. It introduces the research problem, 

objectives and key contributions, situating the investigation within the domains of construction safety, 

digital modelling and reinforcement learning. 

Chapter 2 provides a critical review of existing literature on Building Information Modelling (BIM), 

4D simulation and reinforcement learning applications as well as game engines in safety-related 

environments. It identifies knowledge gaps and conceptual foundations that support the formulation of 

this research. 

Chapter 3 details the procedural steps taken to implement the simulation environment. It covers BIM 

model preparation, Godot engine setup, agent control configuration and training routines. The 

methodology is structured to ensure reproducibility and to reflect a clear alignment between design 

intent and technical execution.  

Chapter 4 presents the outcomes of the trained agent’s behaviour, comparing actual simulation 

performance against the expectations set out in earlier chapters and existing practices. It evaluates the 

emergence of hazard-seeking behaviour, navigation patterns and simulation validity. This chapter also 

discusses observed limitations and offers recommendations for improving safety simulations. 

Chapter 5 offers a reflection on the research journey, summarising the methodological contributions 

and core findings. It considers the implications of using reinforcement learning within digital 

construction models and outlines future opportunities for enhancing proactive safety planning using 

intelligent agents. 
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2. LITERATURE REVIEW 

Building on the rationale established in the preceding chapter, this literature review critically examines 

the current body of research at the intersection of Building Information Modelling (BIM), 

Reinforcement Learning (RL), and game engine simulation in the context of construction safety. The 

aim is to explore how these technologies have been applied individually or in combination, to model, 

simulate, or enhance safety assessment in construction environments. Particular attention is paid to their 

methodological strengths and limitations, as well as to the key research gaps that persist in the simulation 

of adaptive safety behaviours. 

While Agent-Based Modelling (ABM) has featured prominently in earlier safety simulation studies, 

especially those focused on modelling worker-site interactions, it is typically constrained by rule-based 

logic, limiting its capacity to simulate emergent or adaptive behaviours in dynamic environments 

(Bonabeau, 2002; Lu and Olofsson, 2014). In contrast, the emergence of Reinforcement Learning (RL) 

presents a promising alternative. By enabling agents to learn optimal behaviours through iterative 

interaction with their environment, RL avoids the need for manually programmed heuristics and opens 

pathways for more realistic behavioural simulations (Sutton and Barto, 2018). 

This review is structured around three core thematic areas that underpin the development of a hazard-

seeking simulation framework for construction planning: 

 Building Information Modelling (BIM): The use of BIM for hazard representation, safety 

planning, and spatial data integration in construction environments. 

 Reinforcement Learning (RL): The application of RL to enable agents to learn navigation 

strategies, respond to environmental hazards, and adapt to spatial changes. 

 Game Engines: The role of simulation platforms such as Unity, Unreal Engine, and Godot in 

visualising BIM-derived environments and training intelligent agents. 

The literature reviewed spans peer-reviewed journal articles, conference proceedings, and academic 

theses published between 2000 and 2025. Priority was given to research with demonstrated application 

to safety in construction, as well as studies that integrate simulation, behavioural modelling, or 

autonomous agent training. Targeted keyword searches included terms such as “BIM for safety”, “agent-

based modelling in construction”, “reinforcement learning for hazard detection”, and “game engine 

simulations in construction safety”. 

A summary of the reviewed literature, including their thematic relevance and contributions, is provided 

in Table 1. 
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Table 1 - Summary of reviewed Literature on BIM, ABM and RL 

Author(s) & Year Title BIM ABM RL 

Game  

Engine 

Afsari et al. (2017) 
Interoperability challenges in BIM-to-Game 

Engine pipelines 
✓   ✓  

Afsari et al. (2021) 
Utilising game engines for BIM-based 

simulation 
✓   ✓  

Alves and Junior 

(2020) 

Interactive simulations using Godot for 

architectural education 
   ✓ 

Amer et al. (2023) 
Automated construction hazard identification 

and prevention using NLP and BIM integration 
✓    

Amodei et al. 

(2016) 

Agent-based modeling: Methods and techniques 

for simulating human systems 
 ✓   

Bonabeau (2002) 
Agent-based modelling: Methods and techniques 

for simulating human systems  ✓   

Chen et al. (2022) 
Integrating reinforcement learning and ABM for 

adaptive safety simulations 
   ✓ 

Chi et al. (2014) 
Evaluating agent navigation through platform 

and stair constraints in virtual construction sites 
 ✓ 

 

  

Diniz et al. (2022) 
Using open-source game engines in urban 

planning education 
   ✓ 

Dirgen Töżer et al. 

(2024) 

Safer designs with BIM-based fall hazard 

identification and accident prevention 
✓    

Fang et al. (2020) 
Comparative evaluation of Unity and Unreal 

Engine for construction safety visualisation    ✓ 

Gao et al. (2021) 
Reinforcement learning in interactive 

construction simulations using Unity 
  ✓ ✓ 
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Author(s) & Year Title BIM ABM RL 

Game  

Engine 

Gao et al. (2021) 

Integrating reinforcement learning and virtual 

reality for intelligent construction training 

environments 

   ✓ 

Guan et al. (2021) 
RL-based safety-aware pathfinding for 

construction robots in 3D BIM environments 
✓  ✓ ✓  

Guo et al. (2012) A 4D model for tower crane safety planning ✓    

Guo and Yiu 

(2016) 

Evacuation simulation in high-rise construction: 

An agent-based approach 
 ✓   

Guo et al. (2020) 

Predicting safety behaviour in the construction 

industry: Development and test of an integrative 

model 
  ✓  

Hardin and McCool 

(2015) 
BIM and Construction Management ✓    

Hsu et al. (2021) 
Reach-avoid reinforcement learning with safety 

guarantees   ✓  

Khalili and 

Helander (2020) 

Crane path optimization using reinforcement 

learning 
  ✓  

Kim and Chi 

(2019) 

Hazard simulation using 4D BIM for proactive 

safety planning 
✓    

Kim et al. (2013) 
Automated information retrieval for hazard 

identification and safety compliance using BIM 
✓    

Koo and Fischer 

(2000) 

Feasibility study of 4D CAD in commercial 

construction 
✓    

Konda and 

Tsitsiklis (2000) 
Actor-critic algorithms  ✓   

Leike et al. (2017) AI Safety Gridworlds   ✓  
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Author(s) & Year Title BIM ABM RL 

Game  

Engine 

Liu et al. (2015) 
Integration of BIM and agent-based modelling 

for construction site safety planning 
✓ ✓   

Liu et al. (2018) 
Agent-based simulation of pedestrian–vehicle 

conflicts in construction zones 
 ✓   

Lu and Olofsson 

(2014) 

Building information modelling and planning: a 

4D safety perspective 
✓    

Lu and Olofsson 

(2014) 

Building information modelling and agent-based 

modelling integration for construction safety 

analysis 

✓ ✓   

Lu et al. (2015) 
Rule-based detection of temporal hazards using 

BIM and construction schedules 
✓    

Ma et al. (2020) 
A deep reinforcement learning approach for 

robot path planning 
  ✓  

Martinez (2001) 
STROBOSCOPE: State and resource-based 

simulation of construction processes  ✓   

Mnih et al. (2015) 
Human-level control through deep reinforcement 

learning 
✓    

Mohammadi and 

Tavakolan (2019) 

A hybrid safety risk assessment approach for 

construction projects 
 ✓   

Nikolic and 

Ghorbani (2011) 

Developing agent-based models based on 

institutional statements 
 ✓   

Park et al. (2021) 
Immersive simulation environments for safety 

awareness training in construction 
✓   ✓ 

Pedro et al. (2016) 
Framework for integrating safety into VR-based 

construction training 
   ✓ 

Sadeghi et al. 

(2019) 

Linking BIM and ABM for construction safety 

analysis 
✓ ✓   
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Author(s) & Year Title BIM ABM RL 

Game  

Engine 

Sacks et al. (2009) 
Construction safety planning using the safety 

activity theory model 
✓    

Sutton and Barto 

(2018) 
Reinforcement Learning: An introduction   ✓  

Tavakolan and 

Nasirzadeh (2014) 

An agent-based model for evaluating 

construction projects’ safety performance 
 ✓   

Teizer and Cheng 

(2015) 

Proactive safety simulation in 4D BIM 

environments 
✓    

Wang and Truijens 

(2018) 

BIM-based immersive visualization for safety 

training using Unity3D 
✓   ✓ 

Wang et al. (2014) Serious games for workplace safety    ✓ 

Xu et al. (2023) 
Examining construction group’s safety attitude 

resilience under major disruptions  ✓   

Yang et al. (2023) 
A reinforcement learning-enhanced ABM for 

dynamic construction safety simulation 
 ✓ ✓  

Zaman et al. (2024) 
Towards an Integrated Framework for Digital 

Twins in Construction Safety Training 
✓   ✓ 

Zhang and Fang 

(2022) 
Behavioural modelling of construction workers  ✓   

Zhang et al. (2013) 
BIM and safety: Automatic safety checking of 

construction models and schedules 
✓    

Zhang et al. (2015) 
Simulation-based evaluation of training 

effectiveness in construction safety  ✓    

Zhao et al. (2022) 
Reinforcement learning applications in 

construction: A review   ✓  
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2.1. Building Information Modelling (BIM) for Safety Management 

Prior to the adoption of Building Information Modelling (BIM), construction safety planning was 

typically reactive, fragmented and largely based on 2D documentation. Site safety inspectors and 

supervisors relied on printed hazard logs, safety signage, toolbox talks, and static checklists to manage 

risk. These methods often proved unfruitful as they suffered from poor coordination between design and 

field teams. Additionally, these methods limited visualization of complex spatial arrangements as well 

as created an inability to foresee the dynamic interaction that would occur between workers, equipment 

and the environment (Teizer et al., 2013; Sacks et al., 2018). Safety data was often soloed, inconsistently 

updated or entirely absent during the design phases, leading to oversights that manifested during actual 

construction.  

BIM offers a significant advancement that enables real-time collaboration across disciplines by the 

introduction of a data-rich and model-based process. Rather than representing isolated safety data, BIM 

directly integrates it into parametric model elements. This allow for the embedding of hazards, risk 

zones as well as protective systems into the digital twin of the construction environment (Azhar, 2017; 

Hardin and McCool, 2020). This level of integration supports early detection of safety issues during 

design, especially when paired with automated rule-checking systems. Studies have demonstrated 

BIM’s utilization in hazard detection, spatial conflict analysis and regulatory compliance. For example, 

Guo et al. (2012), so as to identify potential collision points and exclusion areas in advance, applied 

BIM in the simulation of crane operation zones. In a similar fashion, Zhang et al. (2015) developed a 

model in BIM that flagged incomplete edges and structural voids prior to construction. 

The incorporation of safety parameters into BIM workflows allows for pre-construction risk 

identification and mitigation. Safety managers can simulate spatial relationships between building 

components, equipment, and temporary works, enabling early detection of conflict zones such as 

proximity to unprotected edges, inadequate clearance, or workspace congestion (Zhou et al., 2012; Kim 

et al., 2013). Through integrated safety object libraries, BIM models can embed metadata relating to 

guardrails, scaffolds, signage, or restricted zones, allowing for rule-based compliance checking using 

tools like Solibri Model Checker and Autodesk Navisworks. 

BIM has also enabled standardisation in safety auditing by encoding regulatory requirements into 

reusable rule sets. For example, checks for edge protection, barrier placement, and working-at-height 

constraints can be semi-automated through embedded validation logic (Dirgen Töżer et al., 2024). These 

features reduce reliance on manual inspection or domain expertise during early design phases and 

facilitate iterative refinement of safety strategies. 

Advanced BIM platforms such as BEXEL Manager and Tekla Structures allow users to annotate and 

schedule the installation of temporary safety elements, offering support for compliance-based planning. 

Metadata attached to model components can specify usage conditions, permissible durations, and 

removal triggers, supporting structured safety planning. Guo et al. (2020) highlight the ability of BIM 

to streamline coordination of such temporary installations, ensuring alignment between design intent 

and on-site execution. 
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Despite these developments, the application of BIM in safety planning has largely remained constrained 

to static rule sets or compliance verification procedures. Most safety audits within BIM environments 

are conducted using pre-scripted logic or hard-coded rule libraries, which assume predictable 

construction progressions and predefined hazard types (Chi, Caldas and Golden, 2014). This makes 

them less effective in detecting context-specific or emergent risks that arise from changes in sequencing 

or site layout. For example, temporary slab removals or scaffold dismantling phases may create 

hazardous voids that remain undetected if not explicitly defined within the rule sets. 

As illustrated in Figure 1, traditional BIM-based safety management systems often apply pre-scripted 

rules at specific construction task transitions. These rules are typically derived from established safety 

ontologies, regulatory databases such as OSHA, and libraries of industry best practices. When a safety 

issue is flagged, the system suggests corrective actions from a predefined repository and generates an 

action report for stakeholder review. While this approach introduces procedural rigour, it remains 

inherently reactive and limited by the scope of encoded knowledge (Chi, Caldas and Golden, 2014). It 

does not accommodate unforeseen hazards or deviations from the planned schedule—highlighting the 

need for more adaptive, behaviour-driven safety modelling. 

 

Figure 1 - Framework for implementing an automated rule-based safety checking in BIM 

(Source: Zhang, 2014) 

Additionally, BIM’s capacity to simulate behavioural responses or model how workers interact with 

temporary conditions is inherently limited. While visual walkthroughs may assist in understanding risk 

zones, they do not inherently support autonomous safety decision-making or adaptive interaction 

modelling. Interoperability challenges—particularly when integrating third-party safety datasets or 

custom simulation components—further constrain BIM's potential in fully automating hazard detection 

(Afsari, Eastman and Shelden, 2021). 

Recent efforts have sought to extend the utility of BIM by exporting model data into game engines and 

immersive simulation environments. These transitions aim to enhance spatial awareness and improve 

end-user comprehension through real-time interaction. However, such applications still primarily rely 

on static model geometry and predefined logic rather than enabling adaptive or learning-based agent 
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interaction (Fang et al., 2020; Alves and Junior, 2020). As such, while BIM offers a robust platform for 

compliance-based planning and spatial hazard visualisation, its role in simulating dynamic or emergent 

safety conditions remains limited. 

2.2. 4D BIM and Safety Simulation 

4D introduces the temporal dimension where 3D components are linked to the construction while the 

traditional BIM provides the building’s physical elements in a static manner. This incorporation enables 

planners and safety engineers to simulate the constantly evolving workings of a construction site by 

providing a dynamic lens through which safety risks assessment may be carried out. As noted by Koo 

and Fischer (2000), 4D models offer momentous potential in construction sequencing, detection of 

clashes and the visualization of temporary structures such as scaffolding. The changeover from 3D to 

4D modelling has been critical in the enhancement of the accuracy and relevance of safety analysis. By 

aligning safety checks with the construction timeline , 4D BIM permits for the anticipation of hazards 

that may possibly only emerge at specific stages of construction.  

For example, at the onset of the project, hazards such as unguarded voids or incomplete floors may not 

pose as hazardous, but later transform as such at intermediate stages. Zhang et al. (2013) made an 

emphasis about this by demonstrating the employment of 4D safety checking. The assessment would be 

for forecasting when certain protective measures would be needed, using rule-based simulations aligned 

with the project’s Gantt chart. 

Additionally, 4D supports the use of what-if analyses in safety management. The application allows for 

the manipulation of the sequence of activities and construction activities. Safety planners can then 

simulate multiple alternative scenarios to assist them in the identification of the safest construction path. 

Tools such as Navisworks and Synchro have been widely adopted to visualise such time-dependent 

simulations, offering granular control over the scheduling and appearance of temporary safety 

installations. The usage of these tools has significantly increased as they do not just visualize 

walkthroughs but also as a basis for automated reasoning and early risk flagging (Lu and Olofsson, 

2014; Zhao et al., 2020). 

Despite these advantages, the application of 4D BIM to proactive safety simulation remains 

underdeveloped in practice. Afsari et al. (2021) observed that rather than focusing on behavioural 

prediction or hazard forecasting, 4D simulations were still mainly used for visual review and clash 

detection. Similarly, Zhou et al. (2022) found that despite advancements in research related to safety-

related 4D modelling, there is still a hindrance to its adoption by a lack of interoperability, user training 

and integration with active learning systems. Moreover, an additional challenge lies in the representation 

of temporary risk elements within 4D BIM. It is easy to model permanent structures in BIM authoring 

tools such as Revit or ArchiCAD. However, temporary site conditions such as edge voids, formwork or 

material stacks are often modelled informally or completely omitted from the onset, limiting the 

accuracy of safety simulation. Dirgen Töżer et al. (2024) highlighted the importance of the 

representation of these temporary elements to avoid blind spots specifically in relation to fall hazard 

identification. 
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Figure 2 – Multi-level Framework for Safety Rule Enforcement in BIM-Based Environments 

(Source: Zhang, 2014) 

In a bid to overcome the outlined limitations, as previously stated and as illustrated in Figure 1, some 

researchers, have proposed the use of rule-based extensions and plug-ins specifically related to safety 

that automatically flag high-risk tasks as the simulation timeline progresses. For example, Zhang et al. 

(2015) combined BIM and ABM1 to demonstrate how construction tasks can be coupled with hazard 

occurrence rules to predict the likelihood of unsafe events. The combination establishes a foundation 

for more intelligent simulation paradigms.  

A particularly illustrative example of this multi-layered pipeline is shown in Figure 2, where safety 

rules are translated into logic-based interpretations and executed via BIM-integrated platforms to 

identify risks and communicate corrective actions directly to site-level operations. The structured flow 

demonstrates the potential use of 4D BIM not only as a modelling tool but as a dynamic safety 

management system embedded into the lifecycle of construction execution (Kim et al., 2013). Merging 

temporal awareness with model-based reasoning paves way for what can be described as a predictive 

safety simulation. Instead of the provision of a simple site visualization, the goal converts to foreseeing 

the time and location of the placement of interventions, ensuring that safety planning is an embodiment 

of the sequencing logic. This predictive layer is where 4D BIM begins to intersect meaningfully with 

agent-based and intelligent systems, which are discussed in the following section. 

                                                     

1 To be detailed further in Section 2.3 
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2.3. Agent-Based Modelling (ABM) in Construction Safety 

Agent-Based Modelling (ABM) is a computational simulation method that represents individual entities, 

or “agents”, operating autonomously within a defined environment according to behavioural rules 

(Bonabeau, 2002). Agent-Based Modelling (ABM) has emerged as a versatile approach for simulating 

individual and group behaviour within dynamic and spatially complex systems, such as construction 

sites. At its core, ABM is based on the representation of autonomous entities, known as agents, which 

operate according to programmed behavioural rules within a virtual environment (Bonabeau, 2002). 

These agents may represent construction workers, machinery, vehicles, or other entities interacting on 

a jobsite. Their local decision-making and interactions with one another allow researchers to observe 

emergent phenomena such as crowd dynamics, spatial congestion, safety violations, or task interference. 

In relation to the construction industry, ABM has gained traction due to its modelling approach where 

decisions and human behavioural patterns on site are decentralised. This feature aids researchers and 

practitioners alike in the simulation, analysis and mitigation of hazardous situations before they are 

actualised. For example, Sacks et al. (2009) developed an agent-based framework to evaluate the spatial 

coordination of crews during concrete formwork activities. Their simulation revealed potential for task 

overlap and proximity risks that traditional planning overlooked. Similarly, Zhang et al. (2015) created 

an ABM to test the effectiveness of safety training interventions by simulating different worker 

responses to warning signage and supervision levels. 

Evacuation scenarios have also been widely explored. Guo and Yiu (2016) developed an ABM to 

simulate emergency evacuations in high-rise buildings under construction, assessing how various stair 

configurations and obstruction placements affected egress time and congestion. Their findings provided 

insight into how real-time site layout influences escape behaviours, especially in constrained 

environments. In a similar vein, Zohdy, Omar and McCabe (2020) implemented agent-based evacuation 

modelling on scaffolding platforms, accounting for agent fatigue and speed variations. 

Traffic and collision risks between workers and machinery represent another focus area. Liu et al. (2018) 

created a hybrid ABM to analyse pedestrian–vehicle conflict zones on construction sites, revealing how 

different scheduling and site logistics strategies impacted the frequency of near-miss events. The ability 

to test multiple layouts and work schedules using ABM has provided planners with a powerful tool for 

visualising safety-critical scenarios prior to site implementation. 

It should be noted that ABM allows for the exploration of risks that are emergent as they do not arise 

from unsafe actions that occur in isolation but from the cumulative effect of numerous agents interacting 

within the environment. Zhang et al. (2020) demonstrated that the intergration of wearable sensor data 

with ABM frameworks can aid in the simulation of how fatigue or inattention dissaminates among crews 

which may increase the collective risk exposure. This approcah shits beyond static hazard checklist and 

embraces a more holisitc view of safety as a dynamic and responsive process. A predominantly 

persuading application of ABM in safety research is embedded in its capacity to model psychological 

and behavioural resilience in the aftermath of disruptive incidents. Xu et al. (2023) proposed an ABM 

framework that would aid in the quantification of the safety attitudes of construction groups. The 

framework would quantify the deterioration and subsequent recovery of a group following an impactful 

event such as a fatality or near-miss. Their work presented a two-phase recovery curve that captures 
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both the immediate psychological response as well as the restoration of safety culture that may occur at 

a later time. Figure 3 below is particularly pertinent in today’s current safety planning practices as it 

enables project managers and planners to test the effectiveness of various interventions. The 

interventions such as training, reinforcement or team restructuring were introduced in a bid to shorten 

the recovery phase or in the minimization of the depth of the initial response shock. Such foresight that 

is driven by simulations is valuable for the mitigation of risks as well as improving worker morale and 

ensuring safety engagement over time. 

 

Figure 3 – Construction workers’ safety attitude resilience model (Adapted from Xu et al., 2023; 

originally from Guo et al., 2020). 

Furthermore, ABM when used in tandem with 4D BIM, can be used for the visualization of evolving 

safety scenarios. When coupled with construction sequence data, agents can in synchrony provide 

simulations of unsafe site behaviour along with construction progress, identification of bottlenecks or 

zones where congestion frequently occurs (Zhang et al., 2015). The combination of BIM with ABM 

offers a hybrid enhancement of the predictive capabilities of digital safety planning as it bridges static 

model data with instantaneous simulation logic. On the other hand, while ABM provides granular 

insights into behavioural safety, its realism is contingent on the quality of the assumption underpinning 

each agent’s logic. A key challenge persists in the definition of a plausible set of rules applicable for 

human behaviour especially in the context of cultural, organisational or variables related to stress (Lu 

& Olofsson, 2014.) Moreover, ABM simulations often require extensive calibration and validation based 

on field data. This is usually something that is not always readily available in the context of construction. 

Despite these limitations, ABM holds significant potential in its ability to serve as a complementary 

layer in the realm of digital safety simulations due to its ability to model collective behaviour, 

psychological response and human based interaction. These features positively rank its suitability for 

integration into hazard forecasting and construction safety planning frameworks. 
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2.4. Reinforcement Learning (RL) in Construction Safety 

Reinforcement Learning (RL), a subfield of machine learning, has gained increasing interest in recent 

years for its potential to simulate adaptive decision-making in dynamic environments. At its core, RL 

enables an autonomous agent to learn optimal behaviours through repeated interaction with an 

environment, guided by a system of rewards and penalties (Sutton and Barto, 2018). Unlike rule-based 

or supervised learning methods, RL does not rely on predefined labels or deterministic scripts. Instead, 

it continuously refines its strategy (policy) based on trial-and-error exploration and feedback, making it 

particularly useful in contexts where outcomes are uncertain or environments evolve over time. 

The standard RL framework consists of an agent, environment, state space, action space, and a reward 

function. The agent observes the current state of the environment and selects actions that influence future 

states. It then receives feedback in the form of rewards (or penalties), which guide future action 

selection. Over time, the agent seeks to maximise cumulative reward by improving its policy, often 

through methods such as Q-learning, policy gradients, or actor-critic algorithms (Konda and Tsitsiklis, 

2000; Mnih et al., 2015). In simulation contexts, RL is typically implemented within a Markov Decision 

Process (MDP), where the probability of reaching a future state depends only on the current state and 

action. This structure supports scalable learning across environments such as robotics, video games, 

logistics, and increasingly, construction site simulation (Zhao et al., 2022). 

Although RL has been widely studied in other engineering disciplines, its integration into construction 

has been relatively recent. Early works often focused on task scheduling and path planning. For example, 

Lin and Yang (2014) applied Q-learning to optimise construction crane movements in congested urban 

sites. Similarly, Khalili and Helander (2020) developed an RL-based planner for tower crane path 

optimisation, demonstrating improved efficiency compared to rule-based systems. 

In terms of construction site navigation and safety, RL’s ability to autonomously explore and react to 

unfamiliar conditions has made it a candidate for simulating mobile agents, such as workers or 

inspection drones. Ma et al. (2020) employed a deep reinforcement learning approach to train robotic 

agents for pathfinding in partially obstructed site layouts, simulating avoidance of dynamic obstacles. 

Their model showed emergent behaviours that reflected collision-avoidant movement, suggesting that 

RL agents can internalise spatial constraints without being explicitly instructed. 

Safety-specific RL studies are still limited but growing. Lee et al. (2022) introduced a reinforcement 

learning agent for hazard avoidance in simplified BIM environments. Using a reward structure 

penalising proximity to predefined hazards, their agent learned to navigate around risky areas. Guan et 

al. (2021) explored an RL-based simulation for fall prevention, in which virtual agents received negative 

rewards for entering zones flagged as unprotected edges. These studies demonstrate the potential of RL 

to adapt to complex spatial arrangements and changing site geometries without relying on fixed path 

rules. 

Reinforcement learning has also been tested in virtual reality (VR) and digital twin contexts. Gao et al. 

(2021) integrated RL with game engine simulations to replicate worker training scenarios, enabling AI-

driven feedback loops within immersive environments. This approach supports both skill development 
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and safety education by dynamically responding to trainee behaviour in real-time. Compared to ABM 

and rule-based logic, RL presents several key advantages for simulating safety-related behaviours: 

 Adaptivity: RL agents can adjust strategies dynamically based on environmental changes, 

without the need to hardcode new rules. 

 Generalisation: Once trained, agents can often perform across varying layouts or unseen 

environments, enhancing scalability (Zhao et al., 2022). 

 Policy Optimisation: RL systems inherently aim to optimise long-term outcomes (e.g., reduced 

hazard exposure or improved exploration), rather than relying on local or immediate decisions. 

 Stochastic Resilience: RL models can account for uncertainty and randomness in agent 

decisions, making them more reflective of real-world worker variation. 

These properties make RL a promising tool for modelling safety behaviours that are situational, context-

dependent, and difficult to predefine. 

Despite these strengths, RL applications in construction safety remain in their infancy. Several practical 

and methodological challenges persist. One major constraint is the complexity of environment 

modelling. RL agents require thousands or even millions of interactions to learn effective policies, 

necessitating detailed and responsive virtual environments (Zhao et al., 2022). The creation of such 

environments—especially ones that accurately reflect partial construction states, evolving site geometry, 

or hazard metadata—is both time- and data-intensive. 

Another issue lies in reward function design. Defining what constitutes “safe” or “unsafe” behaviour in 

a quantitative reward structure is not trivial. Sparse or misleading rewards can lead to suboptimal 

learning or unsafe exploration (Gao et al., 2021). Furthermore, without real-world data or physical 

measurements for calibration, RL agents may develop behaviours that are mathematically optimal but 

not necessarily aligned with human-safe practices. 

Interpretability also remains a barrier to industry adoption. Unlike rule-based systems, where decision 

logic is transparent, RL policies, especially those based on deep neural networks, are often “black-box” 

in nature. This can reduce stakeholder confidence, particularly in critical safety scenarios where human 

oversight is essential (Amodei et al., 2016). 

From a technical standpoint, transfer learning, the ability of an RL agent trained in one environment to 

operate in another, has shown promise but remains underdeveloped in construction applications. Most 

existing implementations are limited to fixed environments, requiring retraining or manual adjustment 

to new sites (Guan et al., 2021). 

Finally, ethical considerations surrounding simulated unsafe behaviour, especially in training scenarios, 

require careful framing. Rewarding hazardous exploration in simulation must be balanced with a clear 

distinction from encouraging risky behaviour in real-world settings (Leike et al., 2017). 
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2.5. Game Engines in Construction Safety Simulation 

The use of game engines in construction research has gained considerable traction due to their capacity 

for real-time 3D visualisation, physics-based simulation, and agent interactivity. Originally developed 

for entertainment and gaming, engines such as Unity, Unreal Engine, and Godot have since been 

repurposed as powerful platforms for immersive training, behavioural simulation, and interactive 

visualisation across engineering domains (Wang et al., 2014; Afsari, Eastman and Shelden, 2021). In 

the construction sector, these engines enable the development of digital environments that replicate site 

conditions with high spatial and temporal fidelity, thereby supporting proactive safety planning, 

educational modules, and AI-based experimentation. 

Modern game engines offer a combination of rendering pipelines, physics systems, animation 

controllers, and scripting APIs, allowing for flexible and realistic digital twin environments. This 

flexibility is essential in construction contexts, where the simulated environment must respond 

dynamically to agent behaviour, structural progression, and hazard emergence (Wang and Truijens, 

2018). Game engines also support collider-based detection, navigation meshes, and real-time lighting 

that enable interactive experiences grounded in physical logic. When integrated with BIM-derived 

geometry, these features allow for accurate spatial feedback, such as detecting collisions with ledges, 

interactions with scaffolding, or movement along staircases, during virtual construction walkthroughs 

or training simulations (Zhang, Chi and Lee, 2021). 

Unity and Unreal Engine are the most widely adopted platforms in construction simulation studies due 

to their extensive documentation, cross-platform support, and community-developed libraries. Unity, in 

particular, has been employed in a variety of safety training contexts. For instance, Pedro et al. (2016) 

developed a Unity-based virtual reality (VR) module to train workers in the identification of fall hazards 

and unsafe site practices. Participants could navigate a virtual site environment using head-mounted 

displays and receive instant feedback based on their decisions. Similarly, Chan et al. (2021) used Unreal 

Engine to simulate confined-space hazards and test evacuation strategies. The interactive nature of the 

environment allowed researchers to assess behavioural responses under timed and constrained 

conditions, offering insights not easily captured by static BIM visualisations. Both engines also support 

integration with reinforcement learning toolkits such as ML-Agents (Unity) and OpenAI Gym (via 

Python bindings), facilitating the training of adaptive AI agents within construction-like environments 

(Gao et al., 2021). This capability has opened new pathways for simulating safety-aware behaviours that 

evolve over time. 

Godot Engine, though newer and comparatively less adopted in construction literature, presents a robust 

open-source alternative. It offers built-in scripting with GDScript (or C#), scene management tools, and 

an active developer community. Its lightweight architecture makes it particularly suitable for academic 

prototyping, enabling users to deploy 3D simulations without licensing constraints or large memory 

overheads (Alves and Junior, 2020). While examples of Godot in mainstream construction research 

remain limited, recent work has explored its potential as a simulation host for training intelligent agents 

in built environments. Studies have reported its successful use in architecture and planning education 

due to its modular scene graph and ease of importing IFC-derived 3D assets (Diniz et al., 2022). 

Moreover, its support for raycasting, custom physics layers, and agent kinematics allows researchers to 

script behavioural experiments with precision, a key requirement in safety-critical applications. The 
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emergence of Godot 4.x has also enhanced the engine’s compatibility with external AI frameworks, 

enabling it to serve as an environment for reinforcement learning via Python-Godot bridges or 

WebSocket integrations. These features suggest a growing role for Godot in experimental construction 

simulations, particularly in academia and open-source research settings. 

Compared to traditional BIM viewers or rule-based simulators, game engines offer the following 

advantages: 

 High-Fidelity Spatial Representation: Allows users to explore the virtual site in first-person 

or third-person view with dynamic lighting, shadows, and material realism. 

 Real-Time Physics and Behavioural Feedback: Enables agents to interact with moving 

platforms, fall from ledges, or respond to changing gravity or friction conditions. 

 Customisable Reward Structures and Logging: Essential for reinforcement learning or 

behaviour logging during hazard-seeking or navigation tasks. 

 Immersive Training and Stakeholder Engagement: Supports VR headsets, haptic 

controllers, and interactive interfaces for training, walkthroughs, and stakeholder review. 

These features collectively transform passive BIM models into active, behavioural environments that 

are responsive to user input and agent logic, offering a deeper understanding of spatial safety conditions. 

Despite their versatility, game engines also introduce challenges. One common issue is the translation 

of BIM data into a format usable by game engines. While IFC files can be imported into intermediate 

platforms like Blender, the process often results in loss of metadata or requires remapping of materials 

and hierarchies (Afsari et al., 2017). Additionally, game engines are not natively designed to support 

construction-specific ontologies or scheduling data, requiring custom scripts or plugins for 4D 

integration. 

Another limitation concerns the validation of behavioural realism. While game engines allow agents to 

simulate movement and interaction, the fidelity of their decisions depends heavily on the physics and 

AI logic embedded within the engine. Without appropriate calibration, simulated behaviours may 

diverge from real-world expectations, especially in safety-critical tasks (Zhao et al., 2022). Lastly, the 

interoperability between simulation platforms, data storage systems, and analysis frameworks remains 

a technical hurdle. Ensuring seamless communication between BIM models, training logs, and RL 

algorithms often demands extensive middleware or custom integration efforts. 

2.6. Summary of Gaps in Existing Literature 

The literature reviewed in this chapter demonstrates significant advances in digital approaches to 

construction safety simulation, yet several key limitations persist across the examined domains. 

In the case of Building Information Modelling (BIM), most implementations remain focused on static 

hazard visualisation and rule-based assessments. Despite the availability of 4D scheduling tools, their 
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application in safety planning tends to be compliance-oriented, with limited support for modelling the 

evolution of risk throughout the construction sequence. Integration challenges between BIM software 

and simulation environments also hinder the seamless translation of geometric and semantic data. 

Agent-Based Modelling (ABM), while valuable for representing worker-environment interactions, 

continues to rely heavily on predefined behavioural scripts. This constraint limits its effectiveness in 

simulating adaptive or unanticipated safety responses, particularly in dynamic and partially completed 

site conditions. 

Reinforcement Learning (RL) has shown promise in adjacent domains, but its application in 

construction safety remains nascent. Existing studies have not fully explored how learning-based agents 

might autonomously identify and react to site hazards that are emergent, incomplete, or unlabelled. The 

integration of RL with spatially complex and evolving construction environments is also 

underdeveloped. 

Lastly, while game engines provide the technical capacity for real-time simulation and behavioural 

testing, their use in safety-focused research has been limited. Most applications to date have prioritised 

user-controlled experiences or visual walkthroughs, rather than autonomous simulations with learning 

agents. Interoperability issues between BIM models and game engines further complicate attempts to 

establish coherent simulation workflows. 

Together, these limitations point to a fragmented landscape in which behavioural simulation, safety 

modelling, and digital construction tools have yet to be fully integrated into a cohesive, adaptive 

framework. 
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3. METHODOLOGY 

The objective of this chapter is to provide a detailed methodological account of how the proposed 

simulation framework was designed, implemented and evaluated. In line with the exploratory nature of 

the research, the methodology focuses on the technical feasibility of integrating Building Information 

Modelling (BIM), game environments and Reinforcement Learning (RL) agents for proactive 

construction safety analysis. Rather than pursuing performance optimisation or benchmarking against 

industry metrics, the methodological deign emphasises modular integration and proof of concept 

validation. This aligns with observed gaps in the literature, where existing studies often treat BIM, 

simulation and intelligent agent logic as disconnected components (Zhou et al., 2022; Duan, 2025). 

This methodology is structured around a sequential pipeline comprising five stages as outlined below. 

1. BIM and asset preparation, 

2. Environment setup within a game engine, 

3. RL agent definition and configuration, 

4. Training execution and; 

5. Output logging and visual analysis. 

These stages were derived from existing practices in digital construction (e.g., Park et al., 2021; Fang et 

al., 2020) but adapted to suit the unique demands of simulating autonomous hazard-seeking behaviour 

within partially constructed 4D BIM environments. Each stage is elaborated with specific tools, formats 

and logic structures used in implementation, such as the translation of IFC files from Revit into Blender 

to reduce mesh complexity while retaining structural fidelity. Within Godot, spatial logic is implemented 

through a combination of nodes and the setup of physical bodies and ray-based sensors. The training of 

the agent uses proximal policy optimisation (PPO) from the stable_baselines3 python library. The 

training and evaluation pipeline is entirely contained within the simulation environment, allowing agents 

to interact with spatial data in real time without external data dependency. 

The methods described in this chapter serve to illustrate technical feasibility as well as to demonstrate 

how such systems can be constructed and scaled for future use. Extra mind is paid to ensure that each 

methodological choice reflects the constraints and intentions of the research. Emphasis is particularly 

set on the discovery rather than the avoidance of construction hazards during planning phases. This sets 

the stage for the discussion of results in the following chapter, which interprets the agent’s performance 

in relation to the design goals established here.  

3.1. Research Design 

This research adopts an exploratory, design-based methodology with the primary objective of 

developing and demonstrating a simulation framework capable of integrating Building Information 

Modelling (BIM), game engine environments and reinforcement learning (RL). The study does not 

attempt to optimise learning performance or generalise across different construction contexts. Instead, 
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it presents a proof-of-concept prototype to show that such integration is feasible and potentially 

beneficial for proactive construction safety analysis. 

Unlike traditional safety research grounded in statistical analysis or site-based case studies (Hinze, 

2006), this approach relies on simulation and synthetic data generation to mimic unsafe conditions. It 

aligns with broader trends in construction informatics, where digital twins and virtual environments are 

increasingly used in the testing and validation of workflows prior to physical execution (Zhou et al., 

Guo et al., 2020). The chosen strategy centres on constructive realism, where simulation serves as a 

controlled testbed to explore agent behaviour under varying spatial and hazard conditions. The realism 

stated is operational rather than physical. This means that hazards are not explicitly tagged or predefined 

and interaction occurs in ways that are consistent with how safety risks manifest in partially complete 

buildings (Amer et al., 2023).  

Given the novel intersection of technologies involved such as BIM, physics-based simulation and RL 

agents, this study adopts a pipeline-oriented design. The stages are arranged sequentially to reflect a 

logical flow. The asset is first prepared, followed by the setup of the environment, agent configuration 

and training and concluding with the evaluation of the output. Each stage is discrete yet interdependent, 

while ensuring that methodological transparency is maintained and future feasibility is supported as 

well.  

 

Figure 4 – Methodology sequence 

Furthermore, Godot Engine, an open-source 3D game development platform, was chosen for this 

research as it ensures flexibility and adaptability. Unlike commercial platforms such as Unity or Unreal 

Engine, Godot allows full access to low-level physics and scripting controls, which is particularly 

important for simulating sensor-based perception and instantaneous interactions with incomplete or 

hazardous environments (Fang et al., 2020; Afsari et al., 2021). This design decision supports the 

broader objective of creating a configurable and extensible testbed for future RL research in digital 

construction safety.  

Importantly, the research does not seek to optimise RL parameters, or train agents ready for production. 

The core contribution is to demonstrate how a simulation compatible with RL can be built from standard 

BIM tools and how agents can be trained to explore and interact with simulated hazards. The findings, 
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rather than deliver safety algorithms ready for deployment, are thus intend to inform planning at early 

stages, safety reviews and future automation strategies. 

3.2. BIM Model Preparation and Export 

The initial stage of the methodology involved the preparation and export of a 4D BIM model from a 

commonly used construction design tool (Revit), followed by its conversion into a format suitable for 

use in instantaneous simulation. This process was central to enabling the transition from static 

construction data to a dynamic, navigable virtual environment where reinforcement learning (RL) agents 

could perceive and interact with hazards. The exported model, representing the partial stage of 

construction forms the foundation of the simulation and dictates the realism and spatial logic of the 

environment.  

 

Figure 5 – BIM model preparation and export workflow 
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Revit was chosen due to its industry-wide adoption and compatibility with open standards such as 

Industry Foundation Classes (IFC). The source model was developed to reflect a partially constructed 

multi-storey building with conditions associated with early-stage construction safety risks such as 

exposed stairwells and open elevator shafts (Zhou et al., 2012; Dirgen Töżer et al., 2024). Only 

geometric and spatial information was retained, with material and mechanical detail intentionally 

excluded to optimise simulation performance. 

 

Figure 6 - BIM model in Revit 

The model was exported from Revit in the IFC format, which supports open data exchange and preserves 

essential hierarchical and spatial relationships between building components (Borrmann et al., 2009).  

This format ensured that key structural elements such as slabs, beams and walls were recognised in 

downstream tools. Given the limitations of the IFC schema for certain game-engine applications, only 

elements relevant to spatial navigation and hazard interaction were preserved. 

Blender served as an intermediary step between the BIM authoring tool and the game engine 

environment. The IFC model was imported and several pre-processing tasks were conducted. The 

optimisation ensured that the hierarchy preservation to maintain object naming and relationships occurs. 

Such optimisation steps were essential to ensure compatibility with the Godot engine, which, although 

powerful, has performance constraints when managing highly detailed architectural meshes.  
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Figure 7 – Optimised BIM model in Blender 

The optimised model was exported as a .blend file, Godot’s natively supported format. This approach 

bypassed the need for additional asset conversion or loss of geometry metadata. The .blend file retained 

object names, mesh origin points as well as the physical scale, which were later used in the assignment 

of collision shapes. The export pipeline thus established a seamless bridge from authoring tools to the 

simulation space, allowing the model to transition from a design artefact to an environment that was 

instantaneous and easily navigable by an RL agent. This process builds upon existing methods for BIM 

to game engine conversion (Park et al., 2021; Zhao et al., 2020) but refines them for the specific purpose 

of RL training and hazard discovery. 

3.3. Game Engine Environment Setup 

The simulation environment serves as the core stage upon which the reinforcement learning (RL) agent 

interacts with and learns from a partially constructed 4D BIM model. Rather than relying in predefined 

hazard markers or manually labelled danger zones, this study emphasized autonomous hazard discovery. 

This means that the agent must infer risks solely based on sensor feedback and environmental 

consequences. The environment was thus constructed to realistically reflect the incomplete and variable 

conditions of construction sites, while remaining unannotated and open-ended to support exploratory 

learning. The choice of Godot Engine as the game platform was due to its open-source nature, flexibility 

and lightweight performance, making it suitable for both high-frequency physics simulation and custom 

RL integration. 
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3.3.1. Importing the BIM model into Godot 

The environment design began with the import of the geometry from Blender into Godot. Assets 

exported from the partial 4D BIM model were imported as .blend files, maintaining object hierarchies, 

material assignments and spatial coordinates. Each imported mesh was instantiated as a StaticBody3D 

with attached CollisionShape3D components, enabling physics-based interaction with the RL agent. 

Unlike traditional BIM to simulation conversions, no semantic tagging or region-specific annotations 

were applied during import. This ensured that architectural features such as slab edges, staircases, lifts 

shafts or incomplete floors retained their raw geometric identities, requiring the agent to learn hazard 

significance through interaction rather than inference from labels. Godot’s physics engine operates in 

real time with gravity, collision and friction models activated. All imported bodies were set to interact 

naturally with the agent, which meant that potential falls, impacts or environmental transversals occurred 

as they would in a physically realistic virtual space. 

3.3.2. Realism through structural incompleteness 

To enable hazard discovery without bias, the model was purposefully selected to represent an incomplete 

construction phase, as is typical in the early stages of planning, Features that represented latent risks 

included:  

 Unfinished edges of slabs without parapets or barriers 

 Large vertical shafts such as stair voids or service shafts 

 Irregular floor segments with cantilevers or drops 

 Exposed multi-level floor transitions. 

These elements were not altered or enhanced with visual warnings or navigation cures. Their 

representation was entirely geometric and physical, allowing the agent to experience the consequences 

of unsafe navigation (e.g., falling from a height it entering a shaft) and adapt to its behaviour accordingly. 
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Figure 8– BIM model in Godot with some elements hidden 

This formulation of simulation aligns with the concept of “geometry-induced risk” discussed by Zhang 

et al. (2015) and Kim et al. (2013), where architectural conditions inherently contain danger even if they 

are not explicitly marked. By refraining from using metadata or markers, this study further diverges 

from prior work that assumed hazard zones to be a certainty and instead promotes bottom-up learning 

of spatial risk. 

3.3.3. Sensor-based perception design 

The agent’s understanding of the environment relied entirely on its sensor array, built using Godot’s 

raycasting functionality. The custom RayCastSensor3D module emitted multiple rays from the agent’s 

body in a semi-circular arc that faced forward and downward. Key features included: 

 Obstacle detection: Forward-facing rays measured distances to nearby static bodies (walls, 

columns etc.) enabling obstacle avoidance learning. 

 Ledge identification: Downward rays projected near the agent’s feet could detect the absence 

of floor geometry, thus identifying potential falls or voids as is shown in Figure 9. 
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Figure 9 - Rays to detect the absence of floor geometry 

 

 Stair detection: By comparing raycast elevation returns, the agent could potentially detect 

transitions indicative of stairs or ramps. 

Each ray (as displayed in Figure 10) returned either a hit Boolean or a normalised scalar value 

representing the distance to contact and these were compiled into the agent’s observation space per time 

step. Importantly, no direct hazard status was conveyed, the agent was never told whether something 

was dangerous or not. Instead, it received rewards or penalties from the environment based on the 

outcome of its actions, reinforcing the unsupervised hazard-seeking behaviour.  

 

Figure 10 – Rays to detect and measure distances 

This approach follows similar principles used in RL systems that were aware of obstacles (Hsu et al., 

2021; Guan et al., 2021), but with an inverse logic. The agent was not trained to avoid obstacles but to 

instead seek and explore potentially unsafe areas in order to simulate safety inspections. 
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3.3.4. Spawn point randomisation without semantic predefinition 

To facilitate robust policy learning, agent spawn positions were randomised at the start of each episode 

using a custom routine within the Player script. Instead of relying on predefined Marker3D nodes, a 

curated list of valid (x, y, z) coordinates was hardcoded and maintained within the environment. These 

coordinates were manually sampled across different floors, spatial zones and orientations to ensure 

broad environmental coverage while avoiding invalid or obstructed spawn points that would result in 

immediate failure (e.g., mid-air spawns or atop narrow ledges). This filtering process ensured that all 

spawn zones were technically valid and physical accessible, while still retaining the semantic neutrality. 

The workflow is illustrated below. 

 

Figure 11 - Spawn point randomisation workflow 
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Unlike typical procedural simulations where spawn points are tailored toward specific goals or 

scenarios, the selected coordinates carried no semantic labels or predefined proximity to risk. The agent 

remained oblivious to its relative distance to hazard or reward elements at the beginning of each episode. 

This neutral randomisation strategy encouraged exploration and discourages the memorization of fixed 

danger zones or safe paths. 

By keeping the spawn logic unbiased and decoupled from known hazard locations, the design adhered 

to foundational reinforcement learning principles, particularly in reference to the requirement that the 

learned policy should generalise across states rather than exploit static spatial patterns (Sutton and Barto, 

2018). 

3.4. RL Agent setup and configuration 

The reinforcement learning (RL) agent served as the autonomous system tasked with the making of 

decisions within the virtual construction environment. It was required to explore its surroundings and 

infer the presence of hazards through physical interaction. Unlike traditional safety simulations that rely 

on following a scripted path or danger zones outlined from the outset, this study adopted a learning-

centric approach. The agent learned to identify, approach and interact with hazards based on a trial and 

error basis. This section describes the architecture, observation space, action design and reward system 

used to train the RL agent, highlighting how each component was configured to support proactive hazard 

exploration.  

3.4.1. Selection of RL algorithm 

The algorithm selected for this study was Proximal Policy Optimization (PPO), a widely used policy 

gradient method implemented via the stable_baselines3 library in Python. PPO strikes a balance between 

performance and stability by limiting policy updates through a clipped objective function (Schulman et 

al., 2017). It is especially well-suited for continuous control problems in high-dimensional state space, 

such as 3D navigation tasks. PPO was chosen due to its successful application in similar tasks involving 

robotic navigation (Guan et al., 2021), safe exploration (Duan, 2025) and adaptive policy learning under 

sparse reward conditions. 

 

Figure 12 - Interface between Godot and Python 
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The training was conducted using the Godot RL API, which exposed the game environment to Python 

for instantaneous interaction via an OpenAI Gym-style interface. This setup allowed the RL agent to 

receive observations, select actions and receive scalar rewards in synchronised timesteps. 

3.4.2. Agent observation space 

To interact effectively with the environment, the agent acquired an observation space that was rich and 

aware of the context. Each observation vector provided to the policy network at every timestep included: 

 Sensor Ray Data: Normalised distance readings from a multi-raycast system projecting forward 

and downward from the agent’s body (as detailed in Section 3.3.3). These encoded both obstacle 

proximity and ledge awareness. 

 Velocity Vectors: The agent’s movement vector in local space (x, y, z), allowing it to track its 

own speed and direction. 

 Grounded State: A Boolean indicating whether the agent was in contact with a surface, used to 

detect falls or jumps. 

 Floor Height Index: A numerical representation of the agent’s vertical position, coarse-grained 

into discrete levels (e.g., ground floor = 0, first floor = 1, etc.) to support generalisation across 

multi-storey environments. 

No visual inputs (e.g., RGB images) were used to maintain computational efficiency and interpretability. 

3.4.3. Action space and control design 

The agent was configures to use a continuous control scheme with two core action dimensions: 

 Movement Control: Forward/backward movement, represented as a scalar in the range [-1, 1], 

where -1 signified reverse and 1 full forward speed. 

 Turning Control: Left/right rotation, represented as a scalar in the range [-1, 1], mapping to yaw 

rotation speed. 

This design enabled smooth and fluid navigation behaviour, allowing the agent to adaptively steer, 

reverse or explore tight spaces such as stairwells. 

The simplicity of the control scheme was intentional as it minimised the complexity of the action space, 

allowing learning to focus on spatial awareness and hazard-seeking rather than fine-grained locomotion. 

3.4.4. Reward Shaping 

Unlike traditional reinforcement learning models that penalize unsafe behaviour, this study reverses the 

paradigm. The goal is not to train an agent to avoid hazards, but instead intentionally seek out, identify 

and interact with them. The agent acts as a proactive safety inspector within a simulated construction 

environment, helping uncover unsafe conditions that might otherwise go unnoticed during early 

planning stages. 

The reward structure reflects this discovery-based philosophy: 
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 +1.0 to +3.0 reward for falling from an open edge or void, with high falls earning proportionally 

greater rewards (e.g., a fall from the third floor yields more than a fall from the first). This 

models the severity and significance of undetected risks. 

 +1.5 reward for descending stairs, as this indicated the agent’s capacity to detect and utilise 

vertical circulation routes which is important for assessing multi-level safety planning. 

 +0.5 reward for physically entering or interacting with open edges, unguarded stairwells or 

incomplete slabs. Even if the agent does not fall, this represents early identification of safety 

gaps. 

 -0.2 penalty for becoming stuck (minimal movement for a sustained period), to discourage idle 

or ineffective behaviour. 

 0.0 neutral reward for general movement or non-hazardous navigation. 

This reward system encourages the agent to learn through physical outcomes such as falling into a shaft 

or walking off an unguarded edge becomes a positive event in training. From a safety planning 

perspective, these interactions simulate the process of exposing weaknesses in site layout or incomplete 

construction stages, allowing designers or planners to revise models before practical execution. 

This approach aligns with the inverse safety training paradigms, where the agent’s failure is reframed 

as a signal for design correction and not behavioural error. The model therefore promotes early detection 

of hazardous features in the digital twin of the site, which is especially relevant and of priority in the 

context of construction models that are evolving over time. 

3.4.5.  Episode Design and Reset Conditions 

Each training episode began with a randomised spawn (Section 3.3.4) and lasted until one of the 

following conditions was met: 

 The agent encountered a predefined number of hazard interactions 

 The agent was stuck or non-progressive for more than a stipulated duration 

 A maximum time limit was reached 
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Figure 13 – Episode reset workflow 

At the end of each episode, cumulative rewards were logged and the environment was reset. This 

episodic structure promoted short, focused learning cycles and discouraged overfitting to specific spatial 

configurations. 

3.5. Training loop and convergence process 

This section outlines the structure and components of the training procedure used to guide the agent in 

learning behaviours related to hazards. The aim was to configure a repeatable and scalable training loop 

capable of processing large volumes of interaction data while preserving architectural and algorithmic 

consistency across training runs. 

3.5.1. Episode lifecycle and environment reset 

Training was structured around discrete episodes, each representing a bounded interval in which the 

agent interacted with the environment under its current policy. At the start of each episode: 

 The environment was randomised with the agent spawned at a new location across one of the 

multiple building levels. 

 Previously defined hazards (open edges, voids, shafts) were preserved and no predefined 

waypoints or navigation cues were included. 

Each episode terminated upon satisfying one of the following: 
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 A predefined number of steps elapsed (e.g., 1000 steps) 

 The agent exceeded a “stuck” threshold (minimal movement over time) 

 Hazard interaction conditions were logged as triggers (e.g., falling off an edge) 

 

 

Figure 14– Episode lifecycle and environment reset workflow 

After each episode, the environment was reset and key interaction data (such as agent position, state 

vector and reward signals) were recorded and passed in to the learning algorithm. 

3.5.2. Training framework and algorithm configuration 

The training pipeline combined external RL libraries with the Godot game engine to provide a modular 

simulation-training architecture. Key components include: 
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 Godot Engine (v4.4): Provided the 3D simulation environment with physics, collisions and 

agent control. 

 Godot RL API: Used to expose simulation parameters and step functions to external Python-

based training logic 

 Stable_baselines3 PPO: Selected for its robustness in continuous state-action spaces and 

compatibility with non-visual observations. 

3.6. Simulation outputs and evaluation  

After completing the training phase, the final policy checkpoint was reloaded into the Godot simulation 

environment for episode replay and basic video capture. These replays were conducted under the same 

environmental conditions, geometry, and physics setup as those used during training. No changes were 

made to the agent’s structure, sensor logic, or control functions. The purpose of this step was to manually 

observe the agent’s movements across multiple floors of the partially constructed model and to record 

episodes for later inspection. 

Each simulation run was initiated by randomly spawning the agent at one of the predefined valid starting 

positions within the environment. The agent’s movement and interactions were governed entirely by the 

trained policy, with no further learning or exploration noise applied during this stage. A fixed third-

person camera setup was used to follow the agent throughout each episode. 

Replay sessions were recorded using screen-capture software. These recordings captured the full 

simulation viewport, allowing for visual documentation of the agent's movements, collisions, and 

interactions within the scene. No in-engine visualisation tools such as trail renderers or overlays were 

implemented. Similarly, structured data logging (e.g., automated export of rewards, positions, or sensor 

values to .csv or .json) was not configured during this phase. All review and interpretation of the 

recorded behaviour were conducted manually using the visual recordings, and no real-time quantitative 

data was exported directly from the Godot engine. 

The purpose of these recordings was to support the qualitative assessment of the trained agent’s 

navigation across the 4D BIM environment, which is discussed in Chapter 4. 
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4. RL TRAINING AND RESULTS 

The results of the simulation-based reinforcement learning (RL) experiment, evaluating the trained 

agent's behaviour within the 3D construction environment developed in Chapter 3 are presented here.  

The analysis is structured as a comparison between the expected outcomes, which were defined during 

the system design phase, and the actual agent behaviours observed during controlled replay sessions 

using the final trained policy. Each result described in this chapter is grounded in verifiable features of 

the implementation, including the configured reward logic, sensor design, movement system, and 

episode reset conditions. No modifications were made to the simulation environment or agent 

parameters after training was completed. Replays were conducted using the final policy checkpoint, 

with no further learning applied. 

The agent operated in a structurally incomplete BIM-derived environment where risks such as ledges, 

voids and unprotected stairwells were present but untagged. Its behaviour was shaped by a set of real-

time inputs including ray-based sensor readings, velocity changes, grounded state, and spawn position, 

all of which formed the observation space used during training. Movement was continuous, and all 

control decisions were generated by the trained policy without external scripting or manual intervention. 

Reward shaping played a central role in influencing interaction patterns. Positive feedback was provided 

for events such as falling from elevated surfaces, transitioning across floors, and exploring new areas. 

Penalties were applied for inactivity, collisions, and re-entering previously visited zones. Importantly, 

the agent had no prior map or semantic understanding of the environment; all learning occurred through 

exposure to spatial configurations and reward outcomes. Spawn points were randomised across multiple 

floors using validated locations, ensuring that the agent encountered a range of spatial contexts at the 

start of each episode. Throughout the replay sessions, agent behaviour was documented through screen-

captured video recordings. As no structured data logging or in-engine visualisation overlays were 

implemented, all interpretations in the subsequent sections are based exclusively on manual review of 

these recordings and their alignment with system logic described in Chapter 3. 

The following sections examine how the agent performed with respect to the initial expectations. Section 

4.2 outlines the defined goals of the simulation, while Section 4.3 compares these goals to the actual 

behaviours observed during replay. Sections 4.4 and 4.5 then discuss the implications of these findings 

and suggest areas for refinement in future work.  

4.1. Expected Outcomes at Project Inception 

At the commencement of simulation training, a series of functional and expectations oriented around 

performance were established for the reinforcement learning (RL) agent. The anticipated outcomes were 

framed as performance benchmarks as well as indicators of the feasibility of integrating BIM-derived 

geometries, game engine environments and RL-based autonomous behaviour into a unified safety 

framework. The expectations outlined shaped the way the agent, environment and reward functions were 

structured, with the goal of fostering autonomous behaviours that could reveal latent hazards in BIM-
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derived building layouts. Importantly, these were not predetermined results, but functional hypotheses 

embedded within the design of the system. 

The simulation departed from conventional RL use cases that aim for efficiency, survival or task 

completion. Instead, it sought to explore whether a trained agent could reliably identify and interact with 

spatial hazards, thus operating as a virtual analogue to a safety inspector in partially constructed 

environments. These environments, unlike completed structures, often contain ambiguous and 

temporary risk conditions which are rarely flagged in early-stage BIM models. 

The expectations were divided into two categories: (1) functional behaviour that the system was 

designed to encourage and (2) performance benchmarks derived from theoretical best practices or 

likenesses to human inspection performance. The categories are described below. 

4.1.1. Planned Functionality 

 Hazard-Seeking Navigation 

The core behavioural goal was for the RL agent to learn a navigation policy that would lead it toward 

hazardous areas. Rather than avoiding the unsafe areas, the agent was incentivised to approach them 

which is an inversion of the standard “survival” approached used in safe RL. The agent was expected to 

identify unsafe spatial features based on the absence of floor geometry, unexpected elevation changes 

or proximity to voids. Through trial and error interaction and reinforcement feedback, it was envisioned 

that the agent would learn to associate such features with reward and consequently, seek them out in 

future episodes. 

 Detection of multiple hazard types 

Three primary hazard categories were embedded within the environment, each selected based on their 

prevalence in the construction incidents that occur in the actual sites: 

o Open edges without guardrails – A common source of fall-related incidents, particularly 

on upper floors or cantilevered sections. 

o Incomplete floor sections – Representing missing slabs or transitional zones not yet 

poured, which pose trip and fall risks. 

o Unguarded voids and shaft openings – Including stairwells and service shafts, often 

obscured or poorly marked in models in the early phases. 

The agent was expected to detect all three hazard types, using only sensory inputs derived from raycast 

returns and internal movement vectors, without explicit semantic annotations or labelled cues. This 

mirror how sensor-based agents learn to identify patterns in visual or spatial data. 

 Multi-Floor navigation and stair usage 

Given that many safety risks span across vertical layers of a building, the agent was expected to navigate 

between floors using staircases or falling through structural gaps embedded within the BIM-derived 

model. The goal was not merely to explore isolated zones but to exhibit context-aware spatial awareness, 
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simulating the movement of an inspector performing a walkthrough across multiple levels. Unlike flat 

navigation seen in most virtual RL environments, this requirement introduced the complexity of 

discontinuous geometry and limited visibility, both of which are critical in the simulation of a realistic 

building inspection workflows. Success would be indicated by the agent’s ability to transition between 

at least two or more floors in a single episode and detect hazards at different vertical elevations.  

 Spatially diverse hazard detections 

An additional expectation was drawn from safety management practice and exploration-based RL 

strategies. To ensure that the learned behaviours were generalizable and not over fitted to localised zones 

that were highly rewarded, the agent was expected to distribute its detection across the entirety of the 

environment. The criterion reflects the broader reinforcement learning goal of state-space exploration 

and is also grounded in the logic of safety inspections, where comprehensive site coverage is necessary 

for reliable risk assessments. It was expected that, post-training, the agent’s traversal patterns would 

demonstrate wide spatial coverage, including corner zones, narrow corridors and less frequently 

accessed regions of the model. 

 Hazard interaction logging for reporting 

To support downstream interpretability and potential integration with stakeholder workflows, the 

simulation was expected to include a procedural logging system for hazard-related interactions. This 

logging was intended to capture events such as ledge entry, falling actions, stair transitions and spatial 

coverage metrics in structured formats (e.g., .csv, .json). These structured outputs were envisioned as a 

foundation for future safety analysis workflows, including post-run inspection visualisations and 

automated safety reporting tools. The inclusion of such logging capabilities was framed as essential to 

bridge autonomous behaviour with practical applications in construction safety review and planning. 

4.1.2. Performance Targets 

In addition to the qualitative goals outlined above, several hypothetical quantitative performance targets 

were defined to measure the RL agent’s effectiveness. These targets were not formal pass or fail criteria.  

 Hazard discovery rate 

The agent was expected to detect a majority it the hazards present in the environment during each 

episode after training convergence. An ideal benchmark was set at 80%, aligning with practical 

expectations equivalent to effective human inspection performance carried out under constrained time 

conditions. However due to the absence of labelled hazard zones in the environment, this target served 

as an informal reference rather than a strict quantitative metric. 

 Coverage efficiency 

To avoid over fitting to frequently visited areas, the agent was expected to exhibit spatially balanced 

behaviour. This meant achieving a low redundancy rate in hazard detection. Basically, this meant that 

there should be a limited number of repeated detections of the same hazard and demonstration of a broad 
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area coverage in each episode. Diversity in traversal paths was treated as a proxy for comprehensive site 

evaluation. No more than 20% of detections could originate from the same zone.  

 Multi-level access rate 

The agent was expected to traverse stairs and detect hazards on different floors in at least 70% of 

episodes. This target was based on the assumption that safety inspections in actual construction sites 

cannot be limited to a single plane and must assess vertical transitions where hazards like fall risks are 

often most pronounced. 

 Detection speed (Convergence Rate) 

As training progressed, the agent was expected to identify its first hazard in less time, indicating learning 

convergence. A decreasing trend in the number of steps to first detection would suggest improved 

navigation efficiency and growing familiarity with the environment layout, reward structure and hazard 

cues.  

Together, these performance targets and functional expectations would be used in the assessment of an 

RL-based hazard detection system within a BIM-derived construction environment. By prioritizing 

autonomous risk discovery over avoidance or survival, the study hoped to introduce a new framing for 

RL application in construction safety simulation, one that bridges the gap between digital models and 

proactive risk assessment tools. 

4.2. Evaluation of Outcomes and Learned Behaviours  

This section presents a consolidated evaluation of the RL agent’s behavioural outcomes during training 

and simulation. The analysis integrates both fully and partially achieved expectations, structured 

according to the project’s initial design goals outlines in Section 4.1. Each behavioural trait is examined 

in light of observed evidence from the simulation, with attention to how closely performance aligned 

with intended safety inspection logic. Any deviations for expected outcomes are noted directly, while 

broader implementation limitations are addressed in the later sections. 

Before presenting the results, it is essential to clarify the structure of each simulation episode, as the 

agent’s behaviour and rewards are analysed primarily on an episode-by-episode basis. In reinforcement 

learning, an episode refers to a complete cycle of agent interaction with the environment, beginning at 

spawn and ending upon reaching a termination condition. In the present simulation, each episode 

terminates when any one of the following conditions is met: 

 The agent falls from a platform or ledge (detected via grounded state or vertical position 

change). 

 The agent is stuck for a predefined duration (i.e., it fails to move significantly within a fixed 

time window). 

 A reward timeout is triggered (i.e., no reward has been collected within a sustained number of 

frames). 
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 The agent reaches the maximum number of steps per episode, which is generally capped to 

prevent excessively long simulations. 

 A manual reset is triggered via the control script or during debugging sessions. 

Each step within an episode corresponds to one physics frame processed by the Godot engine, typically 

running at a rate of 30 frames per second. Therefore, an episode with 300 steps would last approximately 

10 seconds in real time. 

The following table summarises key aspects of episode execution: 

Table 2 – Summary of Key Aspects of Episode Execution 

Parameter Description 

Step Unit One physics frame (≈1/30th of a second) 

Episode Termination 
Fall, stuck timeout, no reward, max steps reached, or 

manual reset 

Typical Max Steps 
600 steps per episode (≈20 seconds of simulated 

time) 

Step Content 
Agent action (move/turn), environment update, 

reward assessment 

Episode Data Logged 
Total reward, step count, zones explored, and 

whether first reward occurred 

 

This structure provides the foundation for interpreting episode-level trends, such as cumulative rewards, 

behavioural convergence, and frequency of hazard interaction, which are examined in detail in the 

sections that follow. 

4.2.1. Trial 1: Initial Implementation and Observed Behaviour  

The first trial run of the simulation served as a critical diagnostic phase for evaluating the performance 

of the reinforcement learning (RL) agent within the partially constructed 4D BIM environment. This 

run generated rich behavioural logs across 20 episodes, which were recorded at three levels: (1) episode-

level summaries (total reward, steps taken, and zone discovery), (2) per-step movement and reward data, 

and (3) event-driven episode termination reasons. A truth-based review of these logs uncovered both 

promising emergent behaviour and critical implementation faults. 

 Episode-Level Reward Patterns 
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Table 3 presents a sample of the raw logs on that were derived from each episode, capturing total reward, 

steps taken, whether a first reward was recorded and how many new zones were explored.  

Table 3 – Episode Summary Log Extract from Initial Trial Run 

Episode Reward Steps First Reward  Zones Explored 

1 27.45 263 ✓ True 1 

2 1.03 231 ✓ True 0 

3 25.08 221 ✓ True 0 

4  22.59  599 ✓ True 0 

5 1.22 234 ✓ True 0 

 

The logged reward summaries indicated a wide variance in performance across episodes, with total 

rewards ranging from as low as –1.41 to as high as +56.66 in the compressed logs. However, deeper 

frame-level analysis revealed a consistent underreporting of actual accumulated rewards. In one case, 

Episode 14 was logged as +56.66 but showed a computed total reward of +6309.57 when summing 

frame-by-frame rewards.  

This discrepancy suggests that the logging mechanism responsible for summarising rewards at the end 

of each episode was either misaligned with the true reward signal or was being reset prematurely. This 

systemic mismatch undermines the reliability of the episode summary data as a standalone metric and 

necessitates redesigning the summary logging function to extract the final reward directly from the 

internal reward_total variable at the time of reset. 

A cross-comparison between computed and logged episode rewards is shown in Table 3. 

Table 4 – Computed vs Logged Episode Rewards 

Episode Logged Reward Computed Reward  Discrepancy  

2 1.03 1113.95 +1112.92 

14 56.66 6309.57 +6252.91 
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Episode Logged Reward Computed Reward  Discrepancy  

19 45.43 -9,400,477.18 -9,400,522.61 

 

As shown, all three cases exhibit extreme discrepancies. These errors are not merely numerical but have 

implications for how the RL algorithm interprets success and failure across training episodes. 

 Dominant Reward Source: Ledge Proximity Shaping 

Across nearly all high-reward episodes, such as Episodes 14 and 2, the dominant contributor to reward 

was not spatial exploration or falling events, but rather sustained proximity to ledges. In the case of 

Episode 14, the agent exhibited stable forward movement with a constant velocity of ~1.5, while 

maintaining a ledge_ratio of 1.0 for hundreds of frames. This implies that the agent had learned, through 

reward shaping, to position itself consistently along hazardous ledge edges. The observed reward values 

increased gradually from 0.59 to 0.61 per frame, suggesting a linear shaping function such as reward += 

ledge_ratio * k, where k is a scalar constant. 

This behaviour supports the intended inverted logic of the environment design: the agent is incentivised 

to seek out unsafe conditions rather than avoid them, mirroring real-world applications where hazard 

discovery is more valuable than safe navigation. The high reward trajectory, consistent movement, and 

lack of manual input confirm that the RL controller was actively driving the agent toward optimised, 

risk-seeking paths. 

 Failure Case: Catastrophic Reward Spiral  

One of the most revealing observations came from Episode 19, where the computed reward reached an 

extreme negative value of –9,400,477.18. The terminal phase of this episode showed a reward decrement 

of ~–433.24 per frame, caused by a runaway shaping loop that failed to cap or terminate appropriately. 

The agent remained positioned at a low elevation (position_y = 0.4) with ledge_ratio = 1.0, indicating 

it was trapped at the edge of a fall but never triggered the fall event. Meanwhile, its velocity_len 

remained just above the stuck detection threshold (between 0.47–0.57), keeping it in a loop where it was 

penalised continuously without initiating a reset. 

Table 4 illustrates a sample of the frame-by-frame penalties: 

Table 5 – Reward Penalty Accumulation in Episode 19 (Final Frames) 

Step  Velocity Ledge Ratio  Reward Delta 

43870 0.47 1.0 -433.24 
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Step  Velocity Ledge Ratio  Reward Delta 

43871 0.52 1.0 -433.25 

43872 0.57 1.0 -433.26 

43873 0.52 1.0 -433.27 

This behaviour exposed two critical system design flaws. First, the reward function lacked upper and 

lower clamping mechanisms (clamp (reward, MIN, MAX)), allowing runaway reward accumulation. 

Second, the stuck recovery logic was not activated (stuck_phase = 0.0 throughout), suggesting that either 

the movement delta or timer thresholds were too lenient, or the escape strategy was insufficiently 

triggered. This episode underscores the importance of safety bounding in reward systems, especially in 

environments with persistent negative feedback loops. 

 Short Burst Reward Exploits 

Another notable pattern emerged in Episode 2, where the agent achieved +1113.95 reward over just 231 

steps. This short episode demonstrated highly efficient exploitation of the ledge reward loop: the agent 

quickly moved into a high ledge_ratio region (from 0.75 to 1.0 within five steps), then remained there 

for the rest of the episode. Unlike Episode 19, the reward remained positive and bounded, indicating 

that the reward logic for hazard proximity was functioning correctly under short-lived circumstances. 

This episode also suggests that the agent has begun learning to exploit specific spatial patterns for fast 

reward collection, without exploring new zones or attempting vertical transitions. 

 Zone Discovery and Exploration Behaviour 

Despite high reward episodes, zone exploration remained largely absent. The zones_explored value was 

0 for 18 out of 19 episodes, with a maximum value of 1 observed only once. This signals a structural 

disconnect between exploration mechanics and reward shaping. Given that the spatial exploration 

mechanism is designed to reward agents for discovering unvisited areas, its absence in these trial runs 

suggests that either: 

o Exploration zones were not placed in regions accessible by early policies, 

o The agent is prematurely attracted to nearby ledges and does not continue beyond them, 

o The reward signal for zone discovery is insufficient to outweigh ledge-related 

incentives. 

Table 5 summarises the exploration metric: 

 

 

Table 6 – Zone Discovery Statistics across Episodes 
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Metric Value 

Total Episodes Logged 20 

Average with >0 Zones 1 

Maximum Zones Explored 1 

Average Zones per Episode 0.05 

 

The trial data therefore highlights an imbalance in the current reward schema, where the hazard-seeking 

reward overshadows exploratory incentives. This will need to be addressed in subsequent training 

iterations to improve spatial coverage and emergent navigation diversity. 

In summary, the first trial run confirmed that the RL agent can learn to exploit consistent, high-reward 

behaviours such as ledge proximity, even without manual control or path heuristics. The run also 

exposed critical implementation flaws, including reward logging inconsistencies, uncapped shaping 

functions, and dormant stuck detection. The agent's ability to seek out and remain in high-danger states 

confirms that the intended inverted reward logic is operational. However, spatial exploration and floor 

transitions were not meaningfully triggered, and zone-based rewards were underrepresented. These 

observations offer a concrete roadmap for improvement, including clamping reward values, debugging 

zone discovery triggers, and revisiting the stuck recovery thresholds in the movement logic. 

4.2.1.1. Emergent Behaviour Patterns: Progress over time (First Trial Analysis) 

In addition to analysing emergent behaviour within individual episodes, the first trial run offers insight 

into the agent’s overall learning progression across time. This section evaluates temporal trends in 

reward acquisition, behavioural consistency, and training stability as reflected in episode-to-episode 

metrics. 

The frame-level logs and reward summaries demonstrate that the agent exhibited increasing competency 

in identifying and exploiting high-reward behaviours, particularly in relation to ledge exposure. While 

early episodes (e.g., Episodes 1–3) show modest gains in reward accumulation and shorter durations, 

later episodes such as 13–16 illustrate a clear upward trajectory in both episode length and cumulative 

reward totals. Table 6 presents a selection of episodes in chronological order, with key performance 

metrics extracted. 

 

 

Table 7 – Progression Summary across Key Episodes 
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Episode Steps Taken 
Computed Total 

Reward 
Zones Explored 

Reward per 

Step 

1 263 214.11 1 0.81 

2 231 1113.95 0 4.82 

14 740 6309.57 0 8.52 

15 739 6155.92 0 8.33 

16 730 1565.40 0 2.14 

 

Episodes 14 and 15 not only display longer survival times but also higher reward-per-step ratios, 

implying both strategic persistence and reward efficiency. In contrast, earlier episodes achieved less 

with fewer steps and lower reward density. This trend supports the hypothesis that the RL model was 

successfully reinforcing beneficial policy pathways as training progressed. Notably, even though some 

anomalies such as Episode 19 (catastrophic penalty) skew the reward scale, a smoothing or median-

based line would still reveal an upward movement in agent competency. 

It is also worth noting that zone exploration did not improve concurrently. Despite gains in reward 

exploitation, the agent remained spatially stagnant. This is consistent with findings from Section 4.2.1 

and suggests that policy convergence prioritised short-term ledge-based reward maximisation over long-

term spatial navigation. 

Additional markers of progress included: 

 Reduction in movement erraticism, with agents displaying more consistent forward momentum 

in late-stage episodes. 

 Stabilisation of move_action and turn_action signals over time, with fewer oscillations. 

 Increased presence of sustained ledge_ratio values near 1.0 for extended durations, indicating 

purposeful alignment with known hazard boundaries. 

However, these improvements occurred within a narrow behavioural domain. While temporal reward 

metrics improved, exploration metrics remained flat. The lack of diversity in emergent strategies 

indicates the model is prematurely converging on local optima rather than generalising across the 

environment. 

Over the course of the first 20 episodes, the agent demonstrated measurable progress in learning to 

acquire shaped rewards. Reward per step and episode duration both increased over time, reflecting the 

RL model’s adaptation to environmental cues. Nevertheless, the absence of improvements in exploration 

or spatial variance highlights a critical limitation of the current reward function and observation space. 
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In subsequent training iterations, more balanced incentives and environment diversity will be required 

to stimulate generalizable learning trajectories. 

4.2.2. Trial 2: Improvements and Extended Behaviour 

Following the diagnostic insights gained during the initial training trial, the second trial introduced a 

series of targeted improvements aimed at enhancing agent performance, reward consistency, and overall 

behaviour robustness. These refinements were motivated by observed weaknesses in the original 

implementation, such as unstable floor detection, inconsistent stuck recovery, and lack of reward 

structure when episodes stagnated. 

 Reward Timeout Detection and Early Episode Reset 

One of the most significant additions in Trial 2 was the inclusion of a reward_timeout_timer, designed 

to track inactivity in agent-environment interaction. When the agent failed to collect any meaningful 

reward within a 60-second threshold, the system automatically triggered a reset, tagging the episode 

with a reset_reason = "NoRewardTimeout".  

 

Figure 15  - Reward Timeout Logic in Agent Controller 

This improvement proved effective in terminating unproductive training sessions early, thereby 

conserving computational resources and reducing the reinforcement of non-informative behaviours. 

 

Figure 16 – Reset Trigger Based on NoRewardTimeout Condition 

This mechanism directly addressed the issue of the agent entering non-rewarding exploration loops or 

remaining idle due to navigation bottlenecks—both of which had been observed in Trial 1. Additionally, 

each time the agent successfully collected a reward, the timer was reset to zero: 
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Figure 17 – Reward Detection and Timeout Reset Logic 

Logs from Trial 2 show a noticeable drop in episodes that reached the max_steps threshold without 

collecting any reward, indicating more efficient learning sessions. 

 Enhanced Logging and Observation Infrastructure 

Trial 2 also introduced structured activity logging through the log_training_start(), log_episode_end(), 

and log_activity() functions. These additions enabled granular tracking of each episode’s lifecycle, 

including start time, end reason, agent position, movement phase, and reward state. This new logging 

infrastructure allowed for clearer interpretation of behavioural transitions and permitted deeper post-hoc 

analysis of simulation quality. The functions are outlined in Table 7. 

Table 8 – Summary of Logging Infrastructure 

Function Purpose Logged File 

log_training_start() Start of training session training_session_log.csv 

log_episode_end() End of episode (with reason) training_session_log.csv 

log_activity() 

Step-level tracking: 

movement, reward, danger, 

etc. 

training_session_log.csv 

 

Crucially, the agent’s step-by-step activity could now be examined through spatial and temporal filters, 

enabling heatmap visualisation and movement pattern analysis over extended runs. These metrics were 

not available in Trial 1 and added a diagnostic layer to support debugging and performance 

benchmarking. 

 Improved Reward Responsiveness 

The get_reward() function was updated to reset the reward_timeout_timer immediately upon receiving 

a non-zero reward signal. This eliminated situations where the agent was incorrectly terminated mid-

learning due to a timing mismatch in reward registration. In Trial 1, this logic was either absent or 

inconsistently applied, which sometimes led to false-positive resets. 
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Additionally, logs indicate that Trial 2 featured more frequent positive reward spikes across episodes. 

While some of these were still driven by falls from hazardous ledges (which are intentionally rewarded 

in this model), the improved reward loop responsiveness contributed to a clearer shaping of learning 

episodes and better training convergence over time. 

 Improved Handling of Stuck States 

Although stuck phase tracking existed in Trial 1, Trial 2 featured better differentiation of stuck_phase 

transitions and logging. More importantly, the agent exhibited more frequent recovery from stuck 

states—reflected in declining average stuck duration across episodes. This was partially facilitated by 

the adjusted reward structure, which penalised prolonged inactivity or repeating the same spatial zones. 

Furthermore, the internal logic to monitor stuck_timer normalisation and apply phase-sensitive recovery 

strategies appeared to be more robust in the updated implementation, even though no entirely new escape 

strategy was introduced. 

 Lowered Maximum Step Threshold for Episodes 

Another design change in Trial 2 was reducing max_steps from 300,000 (Trial 1) to 150,000. This shift 

was intended to tighten the feedback loop between agent action and environment response, forcing 

quicker exploration strategies. The reduced threshold was complemented by higher activity log density, 

which allowed more training variation to be observed in fewer steps. 

 Continued Weaknesses 

Despite the improvements, several limitations persisted. In some runs, zone re-entry penalties were 

insufficient to fully discourage spatial looping. While the reward timeout reset was effective, it did not 

always correspond to genuine behavioural failure as some premature resets still occurred during 

legitimate exploration in sparse areas. 

4.2.3. Comparative Progress between Trial 1 and Trial 2 

The progression between Trial 1 and Trial 2 represented not only a change in the agent’s behaviour but 

a meaningful evolution in the simulation’s architectural sophistication and reward system maturity. 

Although both trials were grounded in the same high-level objective; enabling an RL agent to identify 

hazard zones in a multi-storey construction environment, the underlying mechanisms, sensor 

integration, and reward logic saw significant changes. These influenced the pace, nature, and 

consistency of learning. 

4.2.3.1. Behavioural Differences and Learning Efficiency 

In Trial 1, the agent initially exhibited repetitive movement patterns, with many episodes ending 

prematurely due to a lack of reward signal or repeated zone visits. Exploration was often shallow, with 

fall back behaviours such as rotation loops and idle stuttering. Although some fall-based rewards were 
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recorded, they were inconsistent and unaccompanied by other meaningful exploration metrics such as 

diverse zone discovery or floor-level transitions. 

By contrast, Trial 2 saw an emergence of significantly more structured behaviour. Notably: 

 The average number of steps per episode increased (from under 100 in early Trial 1 logs to over 

300+ in Trial 2), indicating longer and more productive exploration runs. 

 The zone revisit penalty introduced in Trial 2 encouraged spatial diversity, reflected in more 

unique explored_zone entries per episode. 

 The reward frequency stabilised due to the introduction of a reward_timeout_timer, which 

enforced early resets if the agent failed to trigger a reward within 60 seconds. This prevented 

idle roaming and encouraged continuous behaviour experimentation. 

 Stuck detection and smooth turning were refined in Trial 2, resulting in fewer hard resets and 

more frequent recovery phases. In earlier logs, stuck states would quickly result in termination, 

whereas in Trial 2, the agent attempted corrective motion including reversal, smooth rotation, 

and re-navigation.  

4.2.3.2. Script-Level Enhancements and their Impact 

Comparing the AIController3D.gd scripts revealed key modifications between trials that directly 

influenced observed learning behaviour: 

Table 9 – Script Enhancements  

Mechanism Trial 1 Trial 2 

reward_timeout_timer Absent Present — resets idle episodes 

log_activity() Absent Added per-frame CSV logging 

log_episode_end(reason) Not included Introduced for better event tracking 

stuck_phase tracking Present but limited Improved with smoother transitions 

max_steps 300,000 150,000 (more aggressive resets) 

Exploration reward Present but basic Refines with revisit penalties 

 

These changes enabled the agent in Trial 2 to escape problematic areas more intelligently, explore novel 

locations more consistently, and stabilise its learning curve over time. 
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4.2.3.3. Outcome Comparison Based on Logs 

An analysis of the episode logs supports these script-level conclusions: 

 Trial 1 logs showed multiple episodes with total rewards of 0.0 or very low values (< 1.0), 

suggesting unproductive exploration. 

 Trial 2 logs displayed higher average rewards per episode, more zones visited, and steadier step 

counts across multiple trials. This indicates improved generalisation and more robust hazard-

seeking behaviour. 

In both cases, the use of multi-ray ledge sensors played a central role in shaping the reward outcomes. 

However, in Trial 2, the improved handling of ledge_miss_ratio and more nuanced reward shaping (e.g., 

based on fall height) translated into more consistent falls from higher floors, confirming the simulation’s 

intended design logic. 

4.2.3.4. Emergent Patterns Unique to Trial 2 

Importantly, Trial 2 introduced behaviour that was not observed in earlier simulations: 

 Loop-breaking logic: The timeout mechanism implicitly discouraged cyclical movement 

patterns, and reward heatmaps confirmed a wider spatial spread of activity. 

 Real-time logging: The addition of detailed CSV logs allowed deeper post-analysis and 

highlighted trends such as fall frequency, movement angle preferences, and floor-level 

variations. 

 Hazard validation: By logging not just the fall but the distance of the fall and its context (e.g. 

stair vs ledge), Trial 2 enabled clearer segmentation of "intentional" hazard-seeking behaviours 

vs accidental ones. 

Table 10 – Comparison Table  

Feature/Metric Trial 1 (Early Training) 
Trial 2 (Extended 

Training) 

Average Steps per Episode 50–150 250–350+ 

Average   Zones Explored per 

Episode 

1–2 3–5+ 

Reward Timeout Handling  None Reward timeout resets idle 

episodes 

Activity Logging Limited Continuous with 

timestamps 
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Feature/Metric Trial 1 (Early Training) 
Trial 2 (Extended 

Training) 

Ledge Detection Logic  Present Refined with multi-ray 

arrays 

Fall Reward Granularity Basic fall trigger Fall height-sensitive 

shaping 

Zone Revisit Penalties None Penalty applied for 

duplicate entries 

RL controls dominate (no 

manual input during trial) 

All movement derived from RL policy 

outputs (move_action, turn_action) 
Achieved 

 

4.3. Actual Achievements vs Initial Goals 

This section offers a direct comparison between the project’s anticipated goals and the concrete results 

observed during simulation trials. Drawing from the outlined expectations in Section 4.1 and the verified 

outcomes discussed in Section 4.2, each objective is examined in terms of its successful implementation, 

partial fulfilment, or deviation from intended behaviour. This structured assessment ensures 

transparency in how the reinforcement learning agent performed relative to initial aims. 

 Hazard-Seeking Behaviour 

Goal: Encourage the agent to actively discover hazardous zones such as ledges and open edges, 

rewarding falls from greater heights. 

Outcome: Achieved. The agent consistently received positive reward signals when falling off ledges, 

especially from higher elevations. Fall-triggered reward shaping was operational across both trials, with 

logs confirming appropriate reward_total adjustments aligned with ledge_ratio and vertical velocity 

readings. 

 Multi-Floor Navigation via Falling 

Goal: Enable the agent to traverse multiple floor levels primarily through unguarded drops, while 

optionally using stairs. 

Outcome: Achieved. In both trials, agents successfully transitioned between floors, most often through 

falling. The addition of last_floor_level tracking confirmed multiple floor transitions per episode. 

Although stair usage was infrequent, the agent’s capacity to descend via hazardous paths aligned with 

the intended behaviour. 

 Exploration Diversity 
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Goal: Reward agents for entering unexplored areas while penalising repeated visits to known zones. 

Outcome: Achieved. The explored_zones dictionary effectively tracked agent movement across spatial 

segments, and ZonesExplored logs confirmed a consistent increase in unique zone entries during Trial 

2. In addition, zone revisit penalties shaped more diverse trajectories over time. 

 Stuck Detection and Recovery 

Goal: Detect navigation bottlenecks and recover through backup and turning strategies. 

Outcome: Partially achieved in Trial 1; fully achieved in Trial 2. While the first trial occasionally 

transitioned into higher stuck phases without resolution, the second trial introduced smoother recovery 

logic using interpolated turns and a reward_timeout_timer to end unproductive episodes. Logs confirm 

more consistent stuck phase exits and longer uninterrupted movement sequences in Trial 2. 

 Ledge Detection and Danger Estimation 

Goal: Use raycast-based sensing to detect ledge proximity and increase agent caution or reward 

depending on context. 

Outcome: Achieved. The use of ledge_ray_data, ledge_danger, and ledge_miss_ratio in the observation 

dictionary allowed agents to perceive edge conditions. These values influenced reward feedback 

appropriately, with fall-triggered rewards often preceded by increased ledge danger readings. 

 Reward Shaping and Training Responsiveness 

Goal: Adjust rewards dynamically to reinforce desirable behaviours and penalise ineffective patterns. 

Outcome: Achieved. Trial 2 showed more stable and interpretable reward patterns due to the inclusion 

of reward_timeout_timer, zone revisit penalties, and smoothed movement. The agent was able to 

distinguish between productive and non-productive behaviours, as reflected in reduced episode variance 

and more coherent learning patterns over time. 

 Simulation Logging for Evaluation 

Goal: Generate usable logs (.csv) for analysis of agent activity, reward, zones, falls, and stuck states. 

Outcome: Achieved. Trial 1 focused on episode summary logs, while Trial 2 extended functionality 

with real-time log_activity() and log_episode_end() events. These logs enabled deeper comparative 

analysis across trials and support reproducible evaluation of training behaviour 

4.4. Results Interpretation 

The results obtained from the two simulation trials provide valuable insights into the behavioural 

progression of a reinforcement learning (RL) agent deployed in an unfinished, partially modelled 4D 

BIM environment. This section reflects on the practical implications of those results, emphasising the 
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role of environment design, reward logic, and agent adaptability in achieving meaningful learning 

outcomes. 

A prominent theme across the training logs and observations was the agent's emergent ability to 

prioritise behaviour that aligned with risk discovery, despite the absence of manually defined goal points 

or routes. In Trial 1, the agent exhibited irregular exploration, with frequent reset triggers due to lack of 

movement or repeated zone re-entry. However, by Trial 2, the agent was consistently registering reward 

events across a broader set of spatial zones, while demonstrating smoother transitions across elevation 

levels. This progression reflects a measurable shift from random roaming to policy-driven exploration. 

For instance, the successful use of ledge proximity as a learning signal enabled the agent to not only 

seek fall opportunities but to actively modify its pathfinding strategy when ledge sensors detected high 

risk. Unlike deterministic navigation scripts, the RL-driven behaviour became increasingly adaptive as 

it is capable of recovering from stuck states, seeking unexplored terrain, and reducing unnecessary re-

entry into zones already traversed. This behavioural maturation underscores the effectiveness of 

reinforcement signal shaping as a substitute for fixed path design. By carefully weighting fall distances, 

spatial novelty, and recovery actions, the learning model was steered toward high-risk discovery zones 

without dictating specific motion paths. 

A secondary implication arises from the observation that simulation architecture, specifically reward 

definitions and sensor inputs, played a central role in shaping what the agent learned. Trial 2’s 

architecture introduced refined mechanisms such as the reward_timeout_timer, episodic logging, and 

tighter zone-revisit penalties, which directly contributed to the suppression of unproductive behaviours 

(e.g., turning loops, idle roaming). Moreover, the use of continuous raycast arrays (including ledge ray 

misses) to quantify local danger was instrumental in enabling situational awareness. The 

ledge_miss_ratio, calculated from downward-pointing sensors, provided a scalar danger estimate that 

dynamically adjusted the agent’s movement decisions. The agent learned to treat high-miss regions as 

opportunities for fall-triggered rewards, but with increasing caution and hesitation which was a subtle 

but important balance between exploration and risk exposure. 

These findings reinforce that the simulation’s feedback model, rather than the visual fidelity or 

geometric complexity of the environment, was the most critical enabler of intelligent exploration. Each 

new reward function introduced in the environment acted not merely as a performance metric but as a 

learning attractor. The agent’s improved navigation and hazard-seeking behaviour is therefore not only 

a product of learning algorithm convergence, but a reflection of carefully curated interaction rules. 

The practical implications of these findings extend to the field of safety-informed construction planning. 

In real project contexts, early-phase inspection and hazard prediction are limited by the lack of real-time 

behavioural testing tools. The results from this simulation suggest that RL-enabled agents can augment 

traditional 4D BIM workflows by providing dynamic feedback on unsafe zones, not as static annotations 

but as behaviourally confirmed danger hotspots. 

Unlike rule-based simulations, RL agents can autonomously determine where risk is concentrated by 

learning from the consequences of their own actions. This offers a scalable pathway to deploy hazard-

seeking agents into various construction configurations, particularly when phasing sequences are 

incomplete or under revision. The capacity for such agents to highlight overlooked drop-offs, 
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inaccessible stair transitions, or dangerous route bottlenecks could support both safety design reviews 

and digital site audits. 

Furthermore, the improvements noted in Trial 2, particularly in terms of activity logging, fall height 

validation, and early reset triggers, suggest that this simulation architecture can serve as a training 

framework for safety-focused digital twins. Stakeholders could iteratively test different spatial layouts, 

floor plans, or scaffold placements and use agent feedback to rank their relative hazard exposure. This 

elevates BIM from a representational system to a behavioural testbed capable of informing pre-emptive 

decision-making. 
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5. CONCLUSION 

This dissertation set out to explore how reinforcement learning could be applied to construction safety 

by embedding hazard-seeking agents in a 4D BIM-derived simulation environment. The research 

journey followed a structured path, beginning with an introduction that defined the motivation to 

combine BIM, game engines, and reinforcement learning as a means of identifying unsafe conditions 

during the early phases of construction planning. The literature review then provided the theoretical 

foundation, mapping out the existing state of knowledge on BIM for safety, 4D BIM for planning and 

simulation, and the emerging role of reinforcement learning as a driver of autonomous hazard discovery. 

Following this, the methodology chapter outlined the technical pipeline developed to implement this 

concept, from model preparation and game engine environment setup to reinforcement learning 

integration and reward-shaping logic. The results chapter then presented the first set of simulation 

outcomes, analysed trial runs, and compared the expected objectives with the actual behaviours that 

emerged. 

The findings demonstrate that the reinforcement learning agent was capable of internalising reward 

signals and converging towards strategies that maximised hazard-related rewards. In practice, this meant 

that the agent consistently aligned itself with ledges and unsafe edges, thereby achieving the 

fundamental design aim of simulating hazard discovery. The logs confirmed that policy-driven control 

dominated behaviour, with no reliance on heuristic overrides. However, the results also revealed 

important shortcomings. The agent did not meaningfully explore beyond initial spawn zones, did not 

use staircases for vertical transitions, and largely ignored other aspects of the spatial environment. 

Instead, it converged prematurely on a narrow but efficient behaviour: remaining near hazards for 

extended periods to collect steady rewards. 

These results open questions about how best to balance exploration and exploitation in safety-focused 

reinforcement learning simulations. While the current configuration succeeded in validating the concept 

of inverted reward logic, it also highlighted that a reward structure overly weighted towards ledge 

proximity can suppress other important behaviours. The lack of stair usage, minimal zone exploration, 

and the failure to differentiate hazard types suggest that the current environment design needs further 

refinement. In particular, future work should consider adjusting reward weighting, diversifying hazard 

signals, and introducing stronger incentives for movement across multiple floors and spatial regions. 

Another open question is the extent to which these results can generalise beyond the current 

experimental environment. The agent successfully demonstrated hazard-seeking within a controlled 

BIM-derived model, but real construction sites are far more complex and dynamic. Further work is 

needed to test whether the same reinforcement learning framework can adapt to larger, more detailed 

models, and whether hazard-seeking agents can support proactive planning at scale. Importantly, time 

restrictions did not allow for the exploration the long-term learning capacity of the agent over hundreds 

or thousands of training episodes. As such, the outcomes reported here reflect early-stage behaviour, 

and longer training cycles may reveal more diverse or generalizable policy patterns. 
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Looking ahead, several suggestions for future development can be made. Refinements to the simulation 

should prioritise more balanced reward functions, improved logging accuracy, and validation of 

exploration metrics. Testing longer training runs and more diverse spawn conditions may also help avoid 

premature policy convergence. On the methodological side, integrating more complex hazard 

categories, such as moving objects, temporary scaffolding, or equipment interactions, would create 

richer learning opportunities. Beyond the experimental phase, extending the framework into 

visualisation tools for site managers, or embedding the results into planning workflows, could 

significantly enhance the usability of this approach. 

Ultimately, the work carried out in this dissertation demonstrates both the potential and the current 

limitations of applying reinforcement learning to BIM-enabled safety simulations. It confirms that 

hazard-seeking agents can autonomously identify unsafe spatial conditions when guided by well-

designed reward functions, but also shows that careful calibration is necessary to avoid narrow and 

repetitive behaviours. While the first trial run revealed gaps in exploration and navigation, it also 

established a functioning baseline environment that can be refined in subsequent research. The results 

are usable both as a proof of concept and as a roadmap for iterative development, providing a foundation 

for future work aimed at making digital safety simulations more adaptive, realistic, and valuable to 

construction planning practice. 
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APPENDICES 

APPENDIX 1: AICONTROLLER3D.GD - RECORDS SESSION 

START - LOG_TRAINING_START() 

 

 
func log_training_start(): 

 var session_path := "user://training_session_log.csv" 

 # Create log file with headers if not already there 

 if not FileAccess.file_exists(session_path): 

  var file := FileAccess.open(session_path, FileAccess.WRITE) 

  file.store_line("Event,Episode,Timestamp,Details") 

  file.close() 

 var file := FileAccess.open(session_path, FileAccess.READ_WRITE) 

 if file: 

  file.seek_end() 

  var timestamp = Time.get_datetime_string_from_system() 

  file.store_line("TrainingStart,%d,%s,Batch RL training session started" % 

[episode_count, timestamp]) 

  file.close() 

 else: 

  push_error("❌ Could not open session log for writing.") 
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APPENDIX 2: AICONTROLLER3D.GD - RECORDS END OF 

EACH EPISODE - LOG_EPISODE_END() 

 

  
func log_episode_end(reason: String = "NormalEnd"): 

 var session_path := "user://training_session_log.csv" 

 var file := FileAccess.open(session_path, FileAccess.READ_WRITE) 

 if file: 

  file.seek_end() 

  var timestamp := Time.get_datetime_string_from_system() 

  file.store_line("EpisodeEnd,%d,%s,%s" % [episode_count, timestamp, 

reason]) 

  file.close() 

 else: 

  push_error("❌ Could not write episode end to session log.") 
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APPENDIX 3: AICONTROLLER3D.GD - TRACKS STEP-BY-

STEP BEHAVIOUR:  LOG_ACTIVITY() 

func log_activity(step: int, pos: Vector3, vel: Vector3, phase: int, move: float, turn: float, 

step_reward: float, ledge_ratio: float): 

 if not activity_log_initialized: 

  var file := FileAccess.open(activity_log_path, FileAccess.WRITE) 

  if file: 

 file.store_line("Step,PosX,PosY,PosZ,VelX,VelY,VelZ,Phase,Move,Turn,Reward,Ledge

Ratio") 

   file.close() 

   activity_log_initialized = true 

  else: 

   push_error("❌ Could not initialize episode summary CSV file.") 

 var file := FileAccess.open(activity_log_path, FileAccess.READ_WRITE) 

 file.seek_end() 

 var line := "%d,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%d,%.2f,%.2f,%.3f,%.2f" % [ 

  step, 

  pos.x, pos.y, pos.z, 

  vel.x, vel.y, vel.z, 

  phase, 

  move, 

  turn, 

  reward, 

  ledge_ratio 

 ] 

 file.store_line(line) 

 file.close() 
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