
Univerza v Ljubljani 

Fakulteta za gradbeništvo  

in geodezijo 

 

 

ARSENII KIRILLOV 

 

 

APPLICATION DEVELOPMENT USING THE BRICK 

FRAMEWORK 

 

RAZVOJ PROGRAMSKE OPREME Z UPORABO BRICK 

OGRODJA 

 

 

Master thesis No.:  

 

 

Supervisor:  Assist. Prof. Matevž Dolenc, Ph.D. 
 

 

Ljubljana, 2023            



Kirillov, A. 2023. Application development using the Brick framework. II 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

ERRATA 

Page   Line   Error   Correction 

 

 

  



III                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

 

 

 

 

 

 

 

 

 

 

»This page is intentionally blank« 

 



Kirillov, A. 2023. Application development using the Brick framework. IV 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK 

UDK:    004.655.2:69(043.3)    

Avtor:   Arsenii Kirillov   

Mentor:   doc.dr. Matevž Dolenc    

Somentor:    

Naslov:    Razvoj programske opreme z uporabo Brick ogrodja   

Tip dokumenta:  Magistersko delo    

Obseg in oprema:  54 str., 45 sl., 1 pregl.   

Ključne besede:            Brick ogrodje, razvoj aplikacij, Python, analiza podatkov  

 

Izvleček: Nestrukturirani, časovno odvisni, podatki pomenijo izziv za razvoj prenosljivih in razširljivih 

programskih rešitev. V fazi uporabe grajenega sredstva so, kot rezultat prejšnjih faz gradbenega procesa, 

dostopni strukturirani in nestrukturirani podatki ter podatki, ki se ustvarjajo v fazi uporabe in se nanašajo 

na delovanje in vzdrževanje grajenega sredstva.  

Za opis in upravljanje z raznolikimi podatkovnimi modeli pogosto uporabljamo RDF (angl. Resource 

Description Framework), za formalno opisovanje ontologij. Brick je odprto-kodna ontologija, ki opisuje 

podatkovni model upravljanja zgradb, vključno s sistemi za ogrevanje, prezračevanje in klimatske 

naprave. 

V raziskovalni nalogi je prikazan razvoj programske rešitve z uporabo ogrodja Brick za analizo 

heterogenih podatkov v fazi uporabe grajenega sredstva. Povdarek pri razvoju programske rešitve je na 

uporabi odprto-kodne programske opreme in standardiziranih ali odprtih podatkovnih zapisih. 

Arhitekturna zasnova programske rešitve sledi smernicam sodobnih, razširljivih in porazdeljenim 

programskim sistemom, ki temeljijo na vsebnikih Docker. 

 

 

   

  



V                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

 

 

 

 

 

 

 

 

 

 

»This page is intentionally blank« 

 

 

  



Kirillov, A. 2023. Application development using the Brick framework. VI 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

BIBLIOGRAPHIC– DOKUMENTALISTIC INFORMATION AND ABSTRACT 

UDC:    004.655.2:69(043.3)    

Author:   Arsenii Kirillov   

Supervisor:   doc.dr. Matevž Dolenc    

Cosupervisor:    

Title:    Application development using the Brick framework    

Document type:  Master Thesis    

Scope and tools:  54p., 45 fig., 1 tab.   

Keywords:                     Brick Ontology, Application Development, Python, Data Analysis  

 

Abstract:   

Unstructured operational phase-related data is an obstacle on a way to portable and scalable building 

maintenance applications. For the development of any application from a mobile game to a complex 

distributed web system developer tools and standards are required. When it comes to the operational 

phase of construction, there is a lot of static data produced in previous stages and unstructured data for 

building maintenance which is usually handled by facility managers. One of the most efficient 

abstractions for handling heterogeneous maintenance data is a Resource Description Framework (RDF) 

in general and Brick ontology in particular. Brick is a community-driven and open-source ontology 

whose domain is in Building Management Systems and HVAC equipment. Structured by Brick 

maintenance data can be used in applications for energy analysis.  

This master thesis is an attempt to build a data analysis application for the operational stage of 

construction that will use both static and structured maintenance data for visualizing the indoor 

environment. The domain of thesis research and tools that were used for development avoid any 

proprietary formats and software. The application itself was built in a self-sustainable way to keep the 

opportunity of including it in a complex distributed system open based on Docker containers.  



VII                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

 

 

 

 

 

 

 

 

 

 

»This page is intentionally blank« 

  



Kirillov, A. 2023. Application development using the Brick framework. VIII 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to Professor Miguel Azenha for the opportunity to participate in the 

BIMA+ Master's journey and for his pedagogical talent, and to Maria Laura Leonardi for the guidance 

in developing a case study for this thesis.  

I must also express my sincere appreciation to the Open Source BIM and IT community. I can point out 

the pure interest that comes up while reading articles from the Computer Science Department of the 

University of California Berkeley, the IfcOpenShell developers and the OSArch community, who are 

making really big and crucial efforts to push the BIM industry towards freedom from the proprietary 

world of software, and Guido Van Rossum and all the people who have contributed to the creation of 

such open and extensible programming language as Python, which can be used by people without a 

computer science education like me to express and test ideas.  

I am also grateful to my supervisor Matevž Dolenc.  



IX                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

 

 

 

 

 

 

 

 

 

 

 

»This page is intentionally blank« 

 

  



Kirillov, A. 2023. Application development using the Brick framework. X 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

TABLE OF CONTENTS 

 

ERRATA II 

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK IV 

BIBLIOGRAPHIC– DOKUMENTALISTIC INFORMATION AND ABSTRACT VI 

ACKNOWLEDGEMENTS VIII 

TABLE OF CONTENTS X 

INDEX OF FIGURES XII 

INDEX OF TABLES XIV 

LIST OF ACRONYMS AND ABBREVIATIONS XV 

1 INTRODUCTION 1 

1.1 Defining a Stage of Construction 4 

1.2 Defining a Research Workflow 4 

1.3 Brief Description by chapters 5 

2 KEEPING STATIC BUILDING DATA STRUCTURED, ACCESSIBLE, AND 

INTEROPERABLE 7 

2.1 IFC for storing HVAC relevant data 8 

2.1.1 HVAC equipment 9 

2.1.2 HVAC Data in IFC 10 

2.2 Other Formats 11 

3 KEEPING DYNAMIC BUILDING DATA STRUCTURED, ACCESSIBLE, AND 

INTEROPERABLE 13 

3.1 Building Management System or BMS 13 

3.3 BMS Protocols 15 

3.3.1 BACnet 16 

3.3.2 Modbus vs BACnet 19 

3.4 Levels of Abstraction for BMS Representation 21 

3.4.1 Project Haystack 21 

3.4.2 Brick Schema as a Step to Ontologies 23 



XI                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

3.5 Linked Data for Buildings Applications 29 

4 KEEPING APPLICATIONS INTEROPERABLE 32 

4.1 Existing Brick Based Softwares 32 

4.2 Docker 33 

4.3 Mortar 35 

4.4. Brick Applications in Use 37 

4.4.1 Detecting Passing Valves 37 

4.4.2 Occupant Satisfaction 38 

5 PROOF OF CONCEPT DEVELOPMENT 40 

5.1 Sources of Data 41 

5.1.1 ASHRAE Thermal Comfort Database 41 

5.1.2 Brick Model 42 

5.1.3 Data From Sensors 44 

5.1.4 Static Building Data 45 

5.2 Application’s logic 45 

5.2.1 Workflow 45 

5.2.3 Key logical steps in Python 46 

5.3 Application deployment 48 

5.3.1 Application in a docker container 48 

6 CONCLUSION 51 

6.1 Main Conclusions 51 

6.2 Future Work and Limitations 51 

REFERENCES 55 

 



Kirillov, A. 2023. Application development using the Brick framework. XII 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

INDEX OF FIGURES 

Figure 1: Sensors naming practice - Source (Detecting passing valves) ................................................. 1 

Figure 2: Python Levels of Abstraction – Source (Own work) ............................................................... 2 

Figure 3: Serialization and Deserialization - Source (Developedia) ....................................................... 3 

Figure 4: RIBA Stages - Source: (Royal Institute of British Architects) ................................................ 4 

Figure 5: Mind map of the thesis research - Source (Own) .................................................................... 5 

Figure 6: BIM Maturity - Source (BibLus) ............................................................................................. 7 

Figure 7: Data Schema Architecture of IFC - Source (A Method to generate a Modular ifcOWL 

Ontology) ................................................................................................................................................ 9 

Figure 8: Typical VAV-based HVAC distribution system – Source (I Optimize Reality) ................... 10 

Figure 9: BMS logic – Source (Own) ................................................................................................... 13 

Figure 10: BACnet and OSI Architecture – Source (Own) ................................................................... 17 

Figure 11: BACnet Objects – Source (Own)......................................................................................... 18 

Figure 12: BACnet Object Properties – Source (Own) ......................................................................... 18 

Figure 13: BACnet Services – Source (Own) ....................................................................................... 19 

Figure 14: ModBus typical message frame – Source (Own) ................................................................ 20 

Figure 15: Building encoded in Haystack – Source: (Haystack website) ............................................. 22 

Figure 16: LOD Ranking – Source: Tim Berners-Lee .......................................................................... 24 

Figure 17: RDF Concept – Source (Own) ............................................................................................. 24 

Figure 18: SPARQL querying – Source (WordLift) ............................................................................. 25 

Figure 19: SPARQL Select – Source (Own) ......................................................................................... 25 

Figure 20: Brick Classes Hierarchy and Relationships – Source (Na Luo et al., 2022)........................ 27 

Figure 21: Comparison of different schemata for buildings – Source (Balaj et al., 2018) .................... 28 

Figure 22: Updated Semantic Web Layer Cake – Source (Kingsley Uyi Idehen) ................................ 29 

Figure 23: Use case developed and use of metadata models – Source (Pritoni et al., 2021) ................ 30 

Figure 24: Docker - Source (Docker Website) ...................................................................................... 33 

Figure 25: Docker and Virtual Machine Architecture – Source (Own) ................................................ 34 

Figure 26: Docker Application Deploying – Source (Own) ................................................................. 35 

Figure 27: Mortar architecture – Source (Fierro et al., 2018) ............................................................... 36 

Figure 28: Left) schematic of a variable air volume (VAV) with reheat terminal unit and right) a Brick 

data model of the VAV terminal unit – Source (Duarte Roa et al., 2022) ............................................ 37 

Figure 29: Experimental setup of the commercial office space used in the experiment – Source (Cory 

Mosiman et al., 2021) ............................................................................................................................ 39 

Figure 30: Schema of Proof Of Concept – Source (Own)..................................................................... 40 

Figure 31: Insertion of geographical data into ASHRAE Database – Source (Own, Jupyter screenshot)

 ............................................................................................................................................................... 42 

file://///Users/arseniikirillov/Desktop/Arsenii%20Kirillov%20BIMA%20Master%20Thesis%202.0.docx%23_Toc145325828
file://///Users/arseniikirillov/Desktop/Arsenii%20Kirillov%20BIMA%20Master%20Thesis%202.0.docx%23_Toc145325831


XIII                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Figure 32: Brick model development. Defining a graph – Source (Own, Nvim screenshot) ................ 43 

Figure 33: Brick model development. Creating a triple – Source (Own, Nvim screenshot) ................. 43 

Figure 34: Brick Model Development. Adding relationship triple – Source (Own, Nvim screenshot) 44 

Figure 35: Brick model visualization – Source (Own) .......................................................................... 44 

Figure 36: Extracting geographical data from IFC – Source (Own, Nvim screenshot) ........................ 45 

Figure 37: Git Workflow – Source (GitHub) ........................................................................................ 46 

Figure 38: Applied SPARQL query – Source (Own, Nvim screenshot) ............................................... 47 

Figure 39: Application frontend 1 – Source (Own) ............................................................................... 47 

Figure 40: Heatmap – Source (Own) ..................................................................................................... 48 

Figure 41: Docker File – Source (Own, Nvim screenshot) ................................................................... 49 

Figure 42: Shell Script – Source (Own, Nvim screenshot) ................................................................... 49 

Figure 43: Application Structure – Source (Own) ................................................................................. 50 

Figure 44: BACnet Integration – Source (Own) ................................................................................... 52 

Figure 45: BACnet data pulling Python script (IP addresses changed) – Source (Own, Nvim screenshot)

 ............................................................................................................................................................... 53 

 

 



Kirillov, A. 2023. Application development using the Brick framework. XIV 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

INDEX OF TABLES 

Table 1: BACnet and Modbus comparison ........................................................................................... 20 

 



XV                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

AFDD  Automation Fault Detection and Diagnostics 

AHU  Air Handling Unit 

ANSI  American National Standards Institute 

ASHRAE The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

AWS  Amazon Web Services 

BIM  Building Information Modelling 

BMS  Building Management System 

BOT  Building Ontology Topology 

CDE  Common Data Environment 

CI/CD  Continuous Integration Continuous Delivery 

CLI  Command Line Interface 

CSV  Comma-separated Values 

GUI  Graphical User Interface 

HTO  Haystack Tagging Ontology 

HTTP  Hyper Text Transfer Protocol 

HVAC  Heating Ventilation and Air Conditioning 

IFC  Industry Foundation Class 

IP  Internet Protocol 

IRI  Internationalized Resource Identifier 

ISO  International Organization for Standardization 

JSON  JavaScript Object Notation 

LOD  Linked Open Data 

LXC  Linux Container 



Kirillov, A. 2023. Application development using the Brick framework. XVI 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

MORTAR Modular Open Reproducible Testbed for Analysis and Research 

MSTP  Master Slave Transfer Protocol 

OGC  Open Geospatial Consortium 

OS  Operating System 

OWL  Web Ontology Language 

RDF  Resource Description Framework 

RIBA  Royal Institute of British Architects 

RTU  Remote Terminal Unit 

SAREF  Smart Applications Reference Ontology 

SET  Standard Effective Temperature 

SHACL Shapes Constraint Language 

SPARQL Standard Query Language and Protocol for Linked Open Data on the web or for RDF 

triplestores 

SQL  Structured Query Language 

TCP  Transmission Control Protocol 

UDP  User Diagram Protocol 

UI  User Interface 

URI  Uniform Resource Identifier 

VAV  Variable Air Volume Box 

VRF  Variable Refrigerant Flow System 

VM  Virtual Machine 

W3C  World Wide Web Consortium 

XML  Extensible Markup Language 



1                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

1 INTRODUCTION 

Buildings constitute 32% of the energy and 51% of electricity demand worldwide (Balaji et al., 2018). 

Therefore, optimizing energy consumption is essential for reducing carbon emissions and operational 

expenses. Modern buildings and systems are interconnected with devices and sensors, enabling 

centralized operation and management. These controlling sensors contribute a network that requires a 

digital representation for each. The digital twin is comprised of structured data on both the sensors and 

the building systems, along with life-streaming data, and enables safe and efficient facility maintenance. 

However, extensive amounts of static data are also generated during earlier stages of construction.  As 

a consequence, during the construction's operational phase, there exists an abundance of dissimilar data 

that does not contribute to the creation of a digital twin (Mavrokapnidis et al., 2023). 

Modern building management systems (BMS) must operate with unstructured and complex data. An 

example of this type of data is illustrated in Figure 1. It is important to note that even in the case of the 

sensor, which has a lengthy title, certain key components of the equipment are not explicitly mentioned, 

but rather implied. Lack of standardisation of data during the operational phase of construction restricts 

developers from creating energy analysis applications that could significantly enhance building 

efficiency, primarily because of the efforts required to map all of this data into a common format. 

Mapping can turn out to be a costly and complicated task (Balaji et al., 2018). 

 

Figure 1: Sensors naming practice - Source (Detecting passing valves) 

Unlike platforms that allow developers or enthusiasts to build on a defined structure, such as those 

available for mobile development that provide a range of programming languages and tools to facilitate 

the development process.  

Naming conventions or development tools can be considered as a level of abstraction, which exerts a 

significant influence on various industries. Although problems can be resolved at a lower level of 

abstraction, managing a large number of objects can consume substantial resources, while a higher 

degree of abstraction enables the saving of time and resources. An abstract layer can keep many sub-

processes implicit for the user. This particular technique is widely used in the IT industry. For example, 



Kirillov, A. 2023. Application development using the Brick framework. 2 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

the Python programming language, which will be mentioned frequently throughout this thesis, is written 

in the C programming language. Python code is interpreted into bytecode during program execution, 

although a Python programmer may not be aware of this. This indicates that Python is an abstraction 

built over bytecode implemented using the C programming language, while Python itself is also a lower 

level abstraction for a Python-based library for working with Pandas datasets. Selecting the appropriate 

level of abstraction for a given task is essential. 

 

Figure 2: Python Levels of Abstraction – Source (Own work) 

The problem is that the abstraction of naming convention illustrated in figure 1 is human-readable, with 

some level of components implied. The experienced facility manager is aware of the existence of these 

implicit components, but the computer that is supposed to work with them is not. This brings the idea 

of a machine-readable abstraction for the representation of heterogeneous building data.  

Any data produced during a program's lifecycle, intended for future use or distribution, must be 

transformed into a specific, appropriate format. This involves the use of specific algorithms to put a 

complex data structure into a file, a process known as serialisation (CIS, 2020). The example of 

serialisation is illustrated in Figure 3.  



3                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 3: Serialization and Deserialization - Source (Developedia) 

If the sensor naming convention illustrated in Figure 2 is considered, it is also a serialization performed 

by humans into a human-readable format. This type of serialization introduces the problem of chaotic 

data into the operational phase of the construction. However, if such data was serialised by a machine 

into a machine-readable format, it would help to overcome this problem.  

One of the most effective tools for storing heterogeneous data is the Resource Description Framework 

(RDF). Brick Ontology is an abstraction built on top of RDF with a focus on BMS and HVAC systems. 

Brick is capable of modelling equipment, physical entities utilised by such equipment, equipment 

locations, and the relationships among them. This abstraction enables the structuring of heterogeneous 

data, which facilitates the development of portable and scalable applications for energy analysis and 

optimisation. 

The scope of thesis research and case study application will cover the following:  

● Methods for storing fixed building data in an unrestricted and accessible manner 

● Structuring of heterogeneous and dynamic livestreaming data using brick ontology 

● Development of a mini application utilizing static and dynamic data 



Kirillov, A. 2023. Application development using the Brick framework. 4 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

1.1 Defining a Stage of Construction 

It is important to define a stage of construction in the area of the research for the dissertation. In this 

regard, it is relevant to use the Royal Institute of British Architects (RIBA) work plan (Figure 4). The 

research will primarily concentrate on the 7th stage - Use. 

 

Figure 4: RIBA Stages - Source: (Royal Institute of British Architects) 

According to the RIBA plan, the objective of this stage is to enable the smooth operation and 

management of a building. The primary responsibilities of this phase include: 

● Implement Facilities Management and Asset Management 

● Undertake post-occupancy Evaluation of building performance in use 

● Verify Project Outcomes including Sustainability Outcomes 

The main requirement for Stage 7 of the statutory Process is to comply with planning conditions. At the 

end of this stage, information exchange should include feedback from post-occupancy evaluation, as 

well as an updated building manual containing the health and safety file and fire safety information 

(CMS Group, 2023). 

1.2 Defining a Research Workflow 

The primary goal of this thesis is to develop an application that utilises static and dynamic data and is 

scalable. To achieve this objective, it was imperative to have convenient access to all case studies 

implementing the same technology and relevant theoretical articles and notes. The Obsidian Notebook 

was chosen for this purpose as it enables the storage of all files in a single folder and linking them to 

each other. The research's outcomes are presented in a mind map (see Figure 5). This mind map was 

used to identify several technologies that should be used for application development by filtering various 

links to a specific article. 



5                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 5: Mind map of the thesis research - Source (Own) 

As for the application's development, it followed the open-source paradigm. BIM is a relatively young 

industry, highly reliant on standards proposed by major corporations. Every software and physical 

equipment vendor seeks to keep its customers within its own environment. Therefore, the critical mass 

of companies using BIM is stuck in closed formats and chaotic data formats.  Therefore, it was crucial 

to avoid any proprietary software, otherwise, achieving scalability would not be possible.  

1.3 Brief Description by chapters 

Every chapter in this thesis has the purpose of introducing key concepts that were used for application 

development or were used by people to develop similar software: 

● The second chapter describes open standards for storing static building data with a focus on 

IFC. 

● The third chapter describes abstraction layers that are used for the representation of building 

management systems and sensors with a focus on open-source ontologies and Brick in 

particular. 

● The fourth chapter introduces an approach for application development to make it executable 

on every platform and even as a part of bigger software architecture with a focus on Docker 

containerization. 



Kirillov, A. 2023. Application development using the Brick framework. 6 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

● The fifth chapter describes the steps, tools, and strategy of development of the described 

application. 

● The sixth chapter or conclusion describes not implemented parts of the software, contains the 

roadmap for further development, and key conclusions that were made during the 

development process. 

 



7                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

2 KEEPING STATIC BUILDING DATA STRUCTURED, ACCESSIBLE, AND 

INTEROPERABLE  

Progress in the BIM industry brings with itself a variety of softwares and encoding standards. It makes 

the process of data transferring from one stage to another quite complicated (BibLus, 2023). To 

overcome such problems, Building Smart offers a set of tools called Open BIM (Building Smart, 2020). 

This set of tools is supposed to improve data accessibility and interoperability. All these tools are 

supposed to be independent from software vendors and open.  

 

 

Figure 6: BIM Maturity - Source (BibLus) 

In the list of the most famous Open BIM tools can be included such formats as IFC, BCF, COBie, 

CityGML, gbXML, etc. The most relevant format according to the area of research is an IFC or Industry 

Foundation Class. This format allows to store geometrical data relatively accurately and metadata about 

the instances of a building. IFC is an open format and is supported by the majority of popular BIM 

softwares and is an ISO certified standard. 

Opposite site of Open BIM that is offered by Building Smart is total control of the committee. The 

Building Smart committee is responsible for choosing the direction where IFC classes will be extended. 

This means that IFC is not community driven and cannot match fully the needs of industry. However, 

IFC solves a very complex task of storing both geometrical data and metadata and has to be accurate 

enough due to the risks that exist in the construction in general. If such a complex thing was fully 

“forkable”, those forked versions would cause misunderstanding, version conflicts and other serious 



Kirillov, A. 2023. Application development using the Brick framework. 8 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

consequences. Anyway, it has to be admitted that IFC is probably the best software neutral open format 

for BIM nowadays. 

2.1 IFC for storing HVAC relevant data 

Any data has to be modelled according to some set of rules. Any data modelling language is supposed 

to define some entities of data and relationships between them. In the construction industry EXPRESS 

data modelling language is quite popular. This language is also certified by ISO 10303. Any data that is 

modelled according to EXPRESS language can be represented in both text and graphical way. Second 

way of data interpretation is called EXPRESS-G.  

Industry Foundation Class (IFC) is certified by ISO open standard that was developed to store BIM data 

in an interoperable way. Usually, IFC is represented in EXPRESS schema, but it can also be represented 

in XML. Unfortunately, this format wasn't widely applied for storing data from the operational stage or 

any non-static data in general. But this format can be used to store static data about building and 

equipment installed in it.  

Data Schema Architecture of IFC consists of 4 layers (Figure 7): Resource layer, Core layer, 

Interoperability layer, and Domain layer. Core layer contains various generic entities or resources that 

are not necessarily applied to the buildings. However, all other layers will reference this layer. Core 

layer contains abstract concepts such as space or location, that are used to define entities. This layer is 

self-sustainable, so it can exist even if not referenced by any other upper layer. Core layer also contains 

the base class “IFCRoot” that other classes use to inherit from. The “IFCRoot” can be characterized as 

a superclass that allows all classes that inherit from him to be self-sustainable independent classes, 

whereas classes that inherit from Resource Layer directly cannot be used independently. This superclass 

contains 4 attribute definitions: 

● GlobalId or “IfcGloballyUniqueId” that stands for assignment of unique ID  

● Owner History of “IfcOwnerHistory” that is optional and contains information about ownership 

● Name or “IfcLabel” that stands for optional name that can be used by users or specific softwares 

● Description or “IfcText” that contains optional comments for exchange 



9                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

  

Figure 7: Data Schema Architecture of IFC - Source (A Method to generate a Modular ifcOWL 

Ontology) 

The Interoperability layer provides more specialized entities that can be both objects and relationships. 

It contains such elements as “IfcDoor”, “IfcSlab” etc. Highest layer of IFC Architecture is a Domain 

layer that contains specific information related to one of the domains like architecture or HVAC systems.  

2.1.1 HVAC equipment 

After main concepts of storing building-related data in IFC open standard are defined, it must be clarified 

which type of data is the most relevant for an application. Scope of the thesis is the operational stage of 

construction, HVAC systems, and Building Management Systems (BMS). Since BMS-related data 

cannot be stored in IFC properly, this paragraph will keep focus on HVAC equipment. 

Heating Ventilation and Air Conditioning (HVAC) system is a complex system that keeps the indoor 

environment of a building comfortable for occupants. HVAC systems can measure and affect various 

parameters such as temperature, humidity, air quality etc. It consists of various types of equipment that 

work under controlling logic. Simplified HVAC system is illustrated in a Figure 8. 



Kirillov, A. 2023. Application development using the Brick framework. 10 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 8: Typical VAV-based HVAC distribution system – Source (I Optimize Reality) 

Air Handling Unit (AHU) is used to supply buildings with fresh air and return used air back to the 

atmosphere. AHU uses different technologies of air filters, humidifiers, heaters, coolers etc. FAHU 

(Fresh Air Handling Unit) is used to supply only fresh air to the building while AHU can recirculate 

used air to save energy. Incoming air is supposed to be filtered, measured, and heated or cooled.  

Variable Air Volume System (VAV) is an upgraded version of CAV (Constant Air Volume System) 

that regulates the flow of air that is supplied to a zone. There are two ways to control temperature in a 

room with VAV. It can change flow intensity and change temperature in a heater. So, if the temperature 

is too high, the flow of cold supplied air must be more intense. Also, the opposite, if it's cold inside the 

temperature of the heater can be increased and flow reduced. VAV has a sensor installed that analyses 

temperature in a zone. Control damper is used to increase or reduce supplied air flow. In case of many 

zones that are controlled with VAV’s pressure of supplied air can decrease if the VAV is far from AHU 

that pushes air. Therefore, there is a need to install a pressure sensor that can notify if pressure is low, 

and AHU will increase it. 

Usually, HVAC systems are much more complex and contain much more equipment. But according to 

the scope of this thesis, just these 2 crucial HVAC parts will be used for application development, 

therefore focus is on them. 

2.1.2 HVAC Data in IFC 

Approach of storing data in IFC is complex and limitations of format are crucial when it comes to storing 

dynamic data. Transforming IFC to IFCOWL is not efficient because of the huge amount of data that 

has to be stored in RDF triples. This requires much more memory to be stored and resources to work 

with that data.  In a case study of converting IFC to existing Building Ontology Topology (BOT) and 

merging it with Brick (Mavrokapnidis et al., 2023). Brick data model covered BMS and time-series data 



11                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

because IFC format can't cover this aspect, whereas BOT contained all relevant data from IFC. Research 

team concluded that there is a huge limitation from the side of IFC because authoring tools in general 

and Revit in particular can export incorrect spatial information to IFC, which is a very crucial aspect 

when it comes to location of sensors and controlling systems. 

HVAC as an important part of the MEP system can be stored in IFC. In the research (et al., H. Lia and 

J. Zhanga 2022) buildings that were encoded in IFC and on top of each it was performed an analysis, it 

was defined that such components as boilers or chillers had a definition of IfcEnergyConversionDevice, 

all connecting elements like pipes or ducts were defined as IfcFlowSegments and IfcFlowFitting. Such 

equipment as pumps or fans that are supposed to circulate flows had a definition of 

IfcFlowMovingDevice, diffusers had a definition of IfcFlowTerminal. Most common elements were 

connecting elements such as pipes, ducts, and diffusers.  Also it has to be noticed that for every HVAC 

terminal it is important to understand a thermal zone that it serves. In IFC this type of data is supposed 

to be stored in IfcRelContainedSpatialStructure that consists of RelatedElements and RelatingStructure. 

It means that all data can be extracted by iterating through every entity instance. Methodology of 

extracting HVAC data from IFC was complex due to identifying HVAC system type, loops and all 

related components, and relations between components in every loop. 

As a result of research, it was developed an algorithm that was able to extract HVAC systems from IFC 

but it had some limitations 

● lack of comprehensive industry standards for classifying IFC entity instances. IFC format is not 

rigorous enough to store components related to water and air supply separately. 

● IFC is not able to store all data that is required for BEM such as schedules.  

Regardless of all limitations and complexity IFC seems to be the best open format on the market 

nowadays that can store static building-related data. Dynamic data limitations are supposed to be 

overcome by other tool, whereas IFC will be used as a source of static information.  

2.2 Other Formats 

For the development of case studies, all proprietary closed formats are avoided. Thus, a format such as 

Autodesk Revit's ".rvt" is out of scope, regardless of its popularity. This format and any changes made 

to it can only be visualised using a proprietary Autodesk software, which limits the scalability of an 

application. Building Smart formats like gbXML, on the other hand, have a specific purpose. For 

example, gbXML transfers data from a BIM model to energy analysis software (Green Building XML, 

2023). The same applies to open formats from other communities like CityJSON, which is a standard of 

the Open Geospatial Consortium (OGC, 2023) with a specific purpose.  CityJSON is a JSON-based 

format used to develop digital twins (CityJSON, 2023). Its main objective is to accurately locate objects 



Kirillov, A. 2023. Application development using the Brick framework. 12 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

and geometry. However, it is not capable of storing as much information as IFC and lacks specific 

classes for representing HVAC systems. As the aim of this chapter is to identify a suitable data source 

format for the application, it is preferable to use a more general format like IFC. 



13                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

3 KEEPING DYNAMIC BUILDING DATA STRUCTURED, ACCESSIBLE, AND 

INTEROPERABLE 

IFC is a preferable format for storing static data, but it may not be the best option for dynamic data due 

to its complex structure. Nevertheless, there is a substantial amount of sensor data that can be subject to 

frequent changes or be sourced from various vendors. It has been suggested that RDF format would be 

an appropriate encoding for storing this type of data, but first there needs to be defined abstraction layers 

that represent BMS data in a digital world.  

3.1 Building Management System or BMS 

Every facility is supposed to be maintained and maintained efficiently. For this purpose, Building 

Management Systems (BMS) are used. BMS must control various systems of the building like 

mechanical, electrical, etc. BMS can also control security, fire safety systems, and elevators. Simplified 

and decomposed logic of BMS can be represented as relationships between input device, controller, and 

controlled device. 

 

Figure 9: BMS logic – Source (Own) 

• Data must be measured by sensors and provided as input to the system. This data could be 

temperature, humidity, pressure, airflow. 

•  Measured data has to be compared to a set of desired outcomes or instructions 

• Output is produced based on measured data to change or maintain the environment 

The building's HVAC systems comprise various components, including multiple AHUs, VAVs that 

supply the building with fresh air, water pumps, pipes, security, and fire systems. To ensure proper 

functioning, all these systems and subsystems require closed control loops consisting of sensor/actuator 

pairs. Programmable Logic Controllers (PLC) are usually employed for logic control, and they are hard-

wired to the sensor/actuator pair. This method of control is frequently used as it minimises the quantity 



Kirillov, A. 2023. Application development using the Brick framework. 14 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

of equipment and connections needed, although it is unable to effectively coordinate controllers and is 

limited by difficult-to-overcome hard boundaries. 

3.2 BMS Architecture 

BMS systems currently used operate at a low level of abstraction, with direct access only available for 

specific vendor sensors. As a result, scalability of BMS systems is limited. BMS systems currently used 

operate at a low level of abstraction, with direct access only available for specific vendor sensors.  To 

address this issue, additional layers of abstraction are required to make BMS more adaptable and 

programmable. Researchers at the University of California, Berkeley have proposed several layers to 

achieve this (Dawson-Haggerty et al.). 

Hardware Presentation Layer (HPL). Every BMS consists of numerous sensors, controllers, 

actuators, and linking components. There is a challenge to map all those physical entities into virtual 

digital entities. This process must be performed at a low level. This level is called HPL (Hardware 

Presentation Layer) and it uses the self-describing protocol to overcome the mentioned challenges. HPL 

abstracts physical entities into points that are supposed to produce time-series data or time-stamped 

sequences of values. This layer also includes: 

● Naming - each point has to have global unique identifier  

● Metadata - that helps to in a process of data interpretation 

● Buffering and Leasing - that is used to overcome possible mistakes, missing data and can make 

system more fault tolerant 

● Discovery and Aggregation - helps to aggregate sensors into a single source 

Hardware Level Abstraction (HAL) enables the examination of different aspects such as layouts, 

mechanical and electrical systems, weather, and control logic at a higher abstraction level. HAL 

conducts inspections using a query language that is based on entity relationships. Abbreviations of 

technical terms will be explained upon first use. The query language enables searches based on criteria 

such as HVAC, spatial, and electrical, among others. In addition, HAL facilitates the implementation of 

control logic by incorporating drivers that provide the interface. Those drives enable the creation of 

commands and the implementation of control loops over HPL. Typically, sensors within a system do 

not store the data they generate. This data could be useful for machine learning, aiding fault detection, 

data visualisation, etc. Thus, the most challenging task is to efficiently store time-series data and allow 

applications to access it in near-real time.  

Time Series Service (TSS) provides an interface that will allow to access huge amounts of data with a 

low latency and at different granularities. This process can be divided into two parts: stream selection 



15                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

language and data transformation language where the first part is responsible for fast access to the data 

and the second is responsible for data cleaning.  

Any change that is performed in a system must be under control. Especially in case of incorrect work of 

the system that can leave some data in an uncertain state. This problem can be solved via a transaction 

mechanism. Transactions ensure consistency of changes that are performed while modifying pieces of 

any state. Transactions must be integrated with HAL which can translate high-level requests into point-

level operations such as read, write, and lock. To implement this process control transactions, require 

the following mechanisms: 

● lease time - that sets time during which performed changes are valid 

● revert sequence - mechanism of cancelling performed actions 

● error policy - rules in case of partial failure 

Resource of BMS has limitations therefore there must be defined rules of access. Authorization service 

is based on the approximate query language of HAL. The first part of the workflow is to check 

permission in the HAL, second action is performed in HPL which is a prove/verify process. It can be 

defined steps to be done forward to a smarter BMS: 

● Higher level of abstraction can perform more precise control. For instance, if there is a need to 

set exact setpoint is inefficient because it will make nearly every zone to be always heated all 

cooled.  

● Occupant satisfaction can be higher in case occupant is able to affect environment with 

personalized control application 

● Having a context of data that was created by points can make system more predictable and 

efficient. This means that real time information can be coupled with semantic data in an 

analysable way. 

3.3 BMS Protocols 

Once all the systems are installed, problems can arise when they work independently, utilise diverse 

control interfaces, and are managed by multiple facility managers. This complicates the development of 

applications that depend on data-driven energy optimisation due to inaccessibility of some data. To 

overcome this challenge, various protocols have been developed.   



Kirillov, A. 2023. Application development using the Brick framework. 16 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

3.3.1 BACnet 

Any protocol is a set of rules for communication between systems. BACnet (Building Automation 

Control Network) is an ISO and ANSI standard protocol for achieving interoperability between the 

various systems within a building. It was created by ASHRAE (American Society of Heating, 

Refrigerating and Air Conditioning Engineers) in 1987. BACnet has been evolving through an open-

consensus process, allowing for free participation without any fees. 

According to Open System Interconnection (OSI, 2023) 7 layers of abstraction can be used by computers 

to connect (Figure 10). This concept was introduced in 1984 by representatives from the biggest 

companies of that time and was certified by ISO. However, nowadays modern networks use a simplified 

TCP/IP (Transmission Control Protocol) model. OSI layers are represented by: 

1) Physical layer that defines types of connection that can be physical cable or wireless. This layer 

also executes bitrate control.  

2) Data link layer that defines connection between two entities on the network. This layer could 

be decomposed into 2 parts: Logical Link Control (LLC), which keeps under control network 

protocols, error control, and synchronization and Media Access Control (MAC) that is 

responsible for permissions.   

3) Network layer which functionality also could by decomposed into 2 main tasks: breaking up 

information into transferable entities and reassembling them after and finding most effective 

ways for data transferring across network 

4) Transport Layer which is responsible for supplying session layer with valid data. It keeps rates, 

error checks, ensures that data was received, etc.  

5) Session Layer that establishes connection channels between devices. This layer is also 

responsible for keeping connection open, when it is requested and ensure that it was closed after. 

6) Presentation Layer that prepares data for the application layer. It defines encoding and 

encryption of data and compares received data to ensure that there was no mistakes.  

7) Application Layer that is used by end-user software. It provides a list of protocols that allows 

user to exchange meaningful data with each other. This layer includes such protocols as Hyper 

Text Transfer Protocol (HTTP), Domain Name System (DNS), File Transfer Protocol (FTP), 

etc. 



17                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 10: BACnet and OSI Architecture – Source (Own) 

BACnet is based on 4 OSI layers: Physical, Data Link, Network, Application (Chipkin, 2023). 

1) Physical Layer: means of connecting devices, transmitting electronics signals to convey data, 

defines hardware specifications, data transmission and reception, topology and physical 

network design. 

2) Data Link Layer: data to frames or packets, rules for addressing, error-checking/ network access, 

flow control, presentation, message format.  

3) Network layer: routing BACnet messages from one network to another. 

4) Application layer: message processing and device addressing, interfaces with application 

software, be responsible for transport and session layer, BACnet objects and properties are 

defined. 

BACnet cannot replace control logic, or the programming of devices, but it provides networking options. 

BACnet utilises an object-oriented approach and contains a library of 54 standard objects. This library 

can also be extended by the user. Moreover, BACnet presents comprehensive application services that 

may be applied to support building devices. These services are categorised into areas like scheduling, 

networking, accessing, etc. BACnet can be viewed as having three key components. Figure 11 illustrates 

Objects that define methods of information representation, Services that describe actions such as 

requests or methods for interoperation, and Transport Systems that define ways of physical connection 

between entities.  

BACnet devices are utilised to support the BACnet protocol, incorporating a microprocessor-based 

controller alongside software. Each device comprises an object which represents metadata of the device, 



Kirillov, A. 2023. Application development using the Brick framework. 18 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

including the input and output points it is intended to control. This device object is required to possess 

a unique identifier across the entire system, referred to as a device instance. 

 

Figure 11: BACnet Objects – Source (Own) 

BACnet Object (Figure 12) is responsible for: 

● Object contains all information that can be used by BACnet.  

● Object can represent information of a single entity and of collection of entities.  

● Object has unique identifier that is a 32-bit binary number that contains information about object 

type and number of instances of object.  

● Object has a list of properties that define an object. The minimal set for the property contains 

name and value 

An object's functionality is defined by the collection of properties that it contains. The role of properties 

in the BACnet system is to allow other parts of the system to read information about objects or even 

write it if permissions allow. The total list of mandatory and optional properties is defined for each case.  

 

Figure 12: BACnet Object Properties – Source (Own) 



19                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Services are specific types of requests inside BACnet. There are 5 types of groups of service 

functionality: 

1) object access that defines rights to read, write, delete, create 

2) device management that sets timings of synchronization, rules for initialisation, backups and 

restoring database 

3) alarm and event (changes of states) 

4) file transfer  

5) virtual terminal (frontend part of BACnet) 

 

Figure 13: BACnet Services – Source (Own) 

BACnet IP is a way of implementation of BACnet based on IP (Internet Protocol). BACnet IP uses UDP 

(Used Diagram Protocol) instead of TCP.  It defines 16 UDP ports: from 0xBAC0 (47808) to 0xBACF 

(47823) so each BACnet device is assigned an IP address. BACnet Mac address is a combination of an 

IP address and a UDP port. The same UDP port shall be used for all BACnet devices in a network. An 

example could be 192.168.1.10: 0xBAC0. For instance, 47808 is a port for BMS Devices and 47809 is 

a port for Alarm devices. In this case, two BACnet networks will exist on a single IP and will not be 

able to communicate and interrupt each other. BACnet network can consist of a single IP or be spread 

or can span across multiple physical or logical IP subnets.   

3.3.2 Modbus vs BACnet 

Modbus is a messaging protocol that is also prevalent in Programmable Controller Networks (PCN). It 

was initially developed by Modicon in the late 1970s. The protocol's use is free, which makes it 

comparable to other tools discussed in this thesis. Because Modbus is a messaging protocol, its 

functionality is reliant on the physical OSI layer of the network. This aspect makes it less flexible than 

BACnet. 



Kirillov, A. 2023. Application development using the Brick framework. 20 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 14: ModBus typical message frame – Source (Own) 

Each data exchange process in the Modbus network can be decomposed to a request from the master 

and a response from the slave like in master-slave transfer protocol (MSTP). Every request or response 

message starts with a slave or device address (Modbus tools, 2023). 

Modbus also can be used at the abstraction of TCP. For this, Modbus encapsulates remote terminal unit 

(RTU) requests or responses (Figure 14) to a TCP package that can be transferred through ethernet as 

well. However, the address at the abstraction of TCP doesn’t remain the same as in MSTP. In this case, 

Modbus uses IP addresses like 192.168.1.100 which is a standard Modbus address. The standard port 

for Modbus TCP is 502, but it can be changed. 

It has been mentioned that LonWorks is one more popular networking protocol that is used for operating 

management. But this protocol is proprietary, therefore it will be left out of the scope of this thesis. 

Table 1: BACnet and Modbus comparison 

 BACnet Modbus 

Developed 

By: 
ASHRAE Modicon Inc. 

Use Communication across devices Connection Between Devices 

Markets 

Industrial, Transportation, Energy 

Management, Building Automation, 

Regulatory and health safety 

HVAC, Lighting, Life Safety, Access 

Controls, transportation and 

maintenance 

Examples 
Boiler Control, Tank Level 

Measurements 

Request temperature reading, send 

status alarm, fan schedule 

Transmission 

modes 
Ethernet, IP, MS/TP, Zigbee ASCII, RTU, TCP/IP 

Standards 
ANSI/ASHRAE Standard 185; ISO-

16484-5; ISO-16484-6 
IEC 61158 



21                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Costs Free of charge Free of charge 

Network 

Interfaces 

Existing LANs and LANs 

infrastructure 
Traditional serial and Ethernet protocols 

Testing BACnet Testing Labs 
Modbus TCP Conformance Testing 

Program 

Advantages 

Scalability between cost, performance 

and system size, High endorsement and 

adoption, Robust networking, 

Unrestricted growth potential 

Easy connected to Modicon, sustainable 

on small amounts of data (<=255 

bytes), high adoption in industrial 

applications, easy to deploy and 

maintain, transfers raw bits or words 

Disadvantages 

Security standard is not implemented 

in all devices, MS/TP wire length 

limitations,  

Large binary objects are not supported, 

no security protocols, limited number of 

data types, requires contiguous 

transmissions, requires great amount of 

configuration and programming   

 

So, which is better: BACnet or Modbus? Based on the comparison in Table 1, Modbus is a simpler 

protocol. It transmits raw bytes in a message frame, as demonstrated. However, this simplicity can be a 

disadvantage on a larger scale. Modbus protocol does not support more complex data types and even 

large binary objects because of it's simplicity. Moreover, Modbus lacks any security protocol, whereas 

BACnet provides one. BACnet is capable of supporting a variety of network protocols, can handle more 

intricate messages, and is more scalable compared to other options (Setra, 2016). For this reason, 

BACnet will be the primary BMS networking protocol focused on in this thesis. 

3.4 Levels of Abstraction for BMS Representation 

All sensors and their communication can be managed using specific networking protocols, such as 

BACnet or Modbus. To integrate them into BMS specific proprietary plug-ins are usually required. 

However, these plugins could be swapped for an abstraction capable of encapsulating entities related to 

communication protocols and physical entities of a building in the homogeneous environment.  

3.4.1 Project Haystack 

Project Haystack represents an open, structured metadata standard that describes building entities using 

semi-structured sets of tags, with the aim of substituting unstructured labels (Fierro, 2019). It is a widely 

used and well-documented open-source toolkit for modelling IoT data. It has a structure similar to JSON 

(JavaScript Object Notation) in that all values are stored in key-value pairs. This labelling system 



Kirillov, A. 2023. Application development using the Brick framework. 22 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

accommodates string values, Booleans, numbers, lists, and dictionaries, as well as bespoke Haystack 

entities such as units of measurement and URIs. Haystack's collection of tools and technologies includes: 

1) Set of Data Types that are used to model IoT data. This Data Types include all general data 

types that are required to handle data exchange.  

2) File Types that define a set of text formats that could be encoded and decoded without ant data 

loss. These formats are Zinc or strongly typed CSV (Comma-separated Values) tabular data 

format, JSON, Trio, or more complex version of YAML format for handling hand-written data, 

CSV, and RDF that could be encoded in turtle or JSON-LD. 

3) HTTP API that allows the exchange of data between different servers and devices. The protocol 

is based on set of short operations like read to query entity data about buildings, rooms, or 

sensors, hisRead to read historized time-series point data, hisWrite to push historized time-series 

to a remote system, watchSub to subscribe to real-time sensor data. 

4) Ontology that is used to standardize rules of data modelling. It includes such tags as site that is 

used location of building or sensors, space that is used to describe rooms, floors, HVAC zones, 

equip that is used for description of any equipment like boiler or AHU, device that could be any 

microprocessor or sensor, weather that is used to describe related to environment conditions, 

etc. 

5) Defs (Definitions) that is a set of mechanism for transforming each tag into ontology-like 

format. Defs include value type that could be string, number, etc, supertype that is a more 

specific version of common types, human description of the tag, ontological relations between 

tags. 

An example of a building from the official Haystack website looks like a common file with a structure 

of a dictionary, which contains key – value pairs (Figure 15). 

 

Figure 15: Building encoded in Haystack – Source: (Haystack website) 

Haystack is a flexible system with advantages such as its ease of use on a small scale and the fact that it 

does not require facility managers to be familiar with complex technologies. However, it poses 

challenges when converting to a more organized structure. Additionally, the system offers the Haystack 



23                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Tagging Ontology (HTO), which is limited to tags and cannot represent building entities encoded in the 

collection of tags (such as zone temperature sensors). The methodology for composing complex building 

systems is not present; instead, the process relies on tags to map raw metadata to the ontology. (Gabe 

Fierro, 2019).  

 3.4.2 Brick Schema as a Step to Ontologies 

It was previously noted that Haystack incorporates a process similar to modelling data in an ontological 

way. But what are Ontologies? Ontology can be described as a dictionary in a particular domain that 

contains a description of knowledge entities and the relationships between them. Ontology should be 

structured in accordance with linked data principles. Linked data is a set of regulations and optimal 

approaches for retaining and distributing machine-readable data on the internet. These practices include: 

1) Using URI as a name for entities 

2) Using HTTP URI to allow to get more information from the web 

3) When someone looks up a URI, provide useful information using RDF and SPARQL 

4) Include cross linking between URI to make data more knowledgeable 

Linked data is considered one of the key foundations of the Semantic Web (Ontotext, 2023). Its first 

principle utilises Uniform Resource Identifiers as an entity identifier which helps in modelling real-

world entities digitally. The second highlights the data retrieval mechanism through Hyper Text Transfer 

Protocol (HTTP) for accessing data on the web. The third principle is about the efficient use of linked 

data. It incorporates RDF as a graph-based means of representing data, which facilitates the storage of 

interconnected data, thereby enabling the derivation of new information from pre-existing facts. The 

Standard Query Language and Protocol for Linked Open Data on the Web or for RDF triple stores 

(SPARQL) is also part of the third principle, providing a query language for data retrieval. The fourth 

principle aims to establish a connection between all the data and provide a context for authorship.  

Linked Open Data (LOD) is a concept of storing linked data in open source. One of the most popular 

LOD sources is DBpedia (DBpedia) which stores data from Wikipedia according to the linked data 

principles. According to Tim Berners-Lee (W3.org, 2009), any data can be ranked in the domain of 

openness (Figure 16).  



Kirillov, A. 2023. Application development using the Brick framework. 24 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 16: LOD Ranking – Source: Tim Berners-Lee 

According to Tim Berners-Lee’s ranking system one star can be considered a PDF file that is accessible 

through the web, two-star data is any structured and machine-readable data available on the web, three 

stars data has to be encoded in non-proprietary format, four-star data has to be stored in W3C standard, 

finally, to achieve five stars data has to be linked to data from third-party sources to be enriched with 

context (W3.org, 2009).   

 

Figure 17: RDF Concept – Source (Own) 

Any literal or Internationalized Resource Identifier (IRI) is a mapping of a physical entity to a digital 

world. IRI’s are a generalization of URI’s and URL’s, which means that IRI provides a wider range of 

Unicode characters. Such structure allows to execution of queries for data extraction.  

SPARQL is comparable to Structured Query Language (SQL) as it enables the retrieval of data through 

a specific syntax, whereby a majority of the keywords come from SQL (see Figure 18).  



25                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 18: SPARQL querying – Source (WordLift) 

The primary dissimilarity between SQL and SPARQL is that in order to query an RDF graph, prefixes 

previously used in the graph must be defined. Additionally, the select line must specify entities such as 

subject, predicate, and object. To select all instead of utilizing (SELECT *) as in SQL, the SPARQL 

query for selecting everything needs to look like this (Figure 19). 

 

Figure 19: SPARQL Select – Source (Own) 

One additional aspect of linked data tools that requires clarification is the serialization format for the 

created graph. RDF has the ability to represent data about entities that can be identified on the internet, 

even if they are not immediately accessible via the Web. Examples may comprise details regarding 

products accessible via online shopping platforms, such as specifications, prices, and stock availability, 

or the outlining of a web user's predilection for information presentation (W3C, 2007). In order to be 

locally accrued, an RDF graph must be serialised. The established models for saving RDF graphs include 

Extensible Markup Language (XML) and Turtle. XML is a widely used format for machines, but it is 



Kirillov, A. 2023. Application development using the Brick framework. 26 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

not easily readable for humans. In contrast, Turtle is a format that is both machine-readable and human-

readable. Turtle data encoding is based on two main datatypes, URIs and Literals, which contribute to 

Triples. In Turtle, URIs refer to conceptual entities, while Literals can be represented as integers, strings, 

and other literal datatypes (Haystack Blog, 2017). Triples in turtle consist of subject property objects 

where: 

• Subjects must be URI 

• Properties must be URI  

• Objects can be either URI or Literal 

Turtle is a preferred datatype for storing RDF graphs, therefore it will be used for further application 

development. As for linked data applications for the specific purpose of encoding BMS-related data, it 

is important to consider the sensitivity of this type of data. This sort of information ought to be kept 

confidential. Therefore, level 4 is best suited for structuring heterogeneous data so that it can be easily 

filtered and accessed when needed.  

Monitoring systems, present in most large commercial buildings, collect data from sensors which can 

be accessed through BMS or Supervisory Control and Data Acquisition (SCADA) systems. However, 

it should be noted that all data collected is stored in a heterogeneous manner based on the vendor's 

specifications. This results in human-readable storage only, rendering the app non-scalable or requiring 

significant resources for porting the application to another building. The Brick ontology can overcome 

this problem because it stores all the information according to a well-defined dictionary (Balaji et al., 

2018). Brick has been formulated to address the limitations posed by current industry standards, catering 

to the demands of both application and vocabulary requirements. It features an extended tagging model 

from Haystack, and adopts location concepts from IFC.  

Brick is an open-source ontology based on graphs that describes the assets of a building and the 

relationships between them. The primary concept of Brick is the hierarchical representation of physical, 

logical and virtual entities. It is designed by an open consortium of researchers and industry 

professionals. Brick follows RDF structure (Figure 17), where RDF graphs are sets of subject-predicate-

object triples. These elements can be IRIs, blank nodes, or datatype literals, and they are employed to 

express descriptions of resources (W3C, 2023).  



27                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 20: Brick Classes Hierarchy and Relationships – Source (Na Luo et al., 2022) 

Class is a fundamental element of Brick. It is a category that defines groups of entities and organises the 

hierarchy. The Brick ontology comprises of three fundamental classes (Figure 17): Equipment, Point, 

and Location. However, in the latest version of Brick, this count has been increased to five, as presented 

in Brick version 1.3. All versions and change logs can be found on the official Brick Ontology website. 

(Brick Ontology).   

 

● Equipment class represents devices and tool that are supposed to serve the building (pumps,  

chillers, heaters, lighting etc) 

● Point class represents sensors that produce data 

● Location class represents location of physical and logical entities 

● Collection class that represents systems like air and water loops, gas, electrical and other 

systems 

● Measurable class that consists of Quantity and Substance, where Substance can be fluid or solid 

 

Brick has been developed to enable the deployment of large-scale building applications in a consistent 

and usable manner. Its main advantage lies in its machine-readable format. In contrast, Haystack must 

first be comprehensible and easy to understand by facility managers. This can prove to be challenging 

when multiple teams of facility managers become involved at a large scale. That's why it is crucial for 

extensive metadata to have consistency, and for the schema utilised to describe it to specify the 

guidelines for organising, defining, constructing, and expanding data.  

Haystack uses sets of value tags and marker tags to define entities. Value tags have the structure of a 

dictionary (key-value structure), and marker tags are singular annotations. A set of marker tags constitute 

an entity that is called a “tag set”. Haystack lacks an explicit class hierarchy therefore automation of the 

generation of the Haystack model can be complicated. 

 



Kirillov, A. 2023. Application development using the Brick framework. 28 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

One of Brick's greatest advantages is its extensibility due to its open-source nature, allowing it to be 

tailored to specific use cases. Brick defines nodes as building assets, equipment, and subsystems, while 

edges represent their relationships, such as location, control, and type of connection. One case study 

developed a fourth root class, "Occupant," (Na Luo et al., 2022). This lesson covered all occupant 

interactions, accesses, and even physical information about the occupant such as age, gender, etc. 

Following testing, the data coverage of traditional Brick, extended Brick, and IFC for occupant data was 

analyzed. In an initial case study of an educational building in Rende, Italy, IFC captured 54% of the 

data points, traditional Brick captured 69%, along with 40% of occupant behavior, while extended Brick 

managed to cover 100%.  In a second case study exploring educational buildings in Shanghai, China, 

that was more behaviour-oriented, extended Brick achieved complete coverage of the buildings, while 

IFC only covered 45%. Moreover, it is possible to extend Brick using existing classes without creating 

new ones. In one of the case studies, Brick was expanded to model the Variable Refrigerant Flow System 

(VRF) in a complex manner (Jingming Li et al., 2021).  

 Even without any extensions, the Brick 

ontology provides considerable depth to 

represent almost everything in the domain of 

HVAC and BMS systems. According to 

research by Balaji et al. (2018), IFC, Haystack, 

Brick, and Smart Applications Reference 

Ontology (SAREF) were utilized to describe 

BMS metadata of existing buildings, where 

Brick achieved the highest percentage of both 

vocabularies and application requirements (see 

Figure 18).  

The most recent version of Brick 1.3 has been 

enhanced to enable the inclusion of external references via the ref-schema (Ref-Schema, 2023). The 

software has already integrated references to IFC or BACnet, and additional references can also be added 

manually.  

Brick also provides validation functionality. Version 1.3 of the Brick ontology follows W3C 

recommendations and moves from an OWL-based ontology to a SHACL-based ontology (Brick 

Schema, 2023). This enables the ontology to include a validation feature. SHACL is a high-level 

vocabulary containing properties that distinguish the validation of data from the deduction of new 

information (SPIN, 2017). It is also featured on the updated semantic web layer cake (Figure 19). 

Figure 21: Comparison of different schemata for 

buildings – Source (Balaj et al., 2018) 



29                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 22: Updated Semantic Web Layer Cake – Source (Kingsley Uyi Idehen) 

3.5 Linked Data for Buildings Applications  

The absence of standardized, machine-readable data hinders the development of portable building 

applications that can include fault detection, energy audits, and optimal controls. By storing data in a 

machine-readable format, it would be possible to create applications that can be scaled and reused for 

multiple purposes.  Existing metadata from a building automation system (BAS) can be mapped to an 

ontology, but this will require considerable time and cost for each specific case (Pritoni et al., 2021). In 

contrast, if all data is stored in a machine-readable format from the outset, it can be a useful data source 

that can also store important data such as hierarchical relationships between components of the HVAC 

system. 

To facilitate the analysis of the selected metadata schemas, it was defined use cases (Figure 20):  

• Energy audits 

• Automated fault detection and diagnostics 

• Optimal control 

 



Kirillov, A. 2023. Application development using the Brick framework. 30 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 23: Use case developed and use of metadata models – Source (Pritoni et al., 2021) 

Use case 1. Energy Audits: Clear and efficient data collection is essential for conducting an energy 

audit. The auditor should gather data on building monitoring and control systems. Once the data has 

been collected and evaluated, the auditor should suggest energy efficiency measures (EEMs) and 

estimate the energy and cost savings that could be achieved if these EEMs were implemented. A 

metadata model helps to ensure an accurate and efficient collection of data during energy audits (Pritoni 

et al., 2021). 

Use case 2. Automated Fault Detection and Diagnostics: In this scenario, a facility manager or third-

party technician is responsible for configuring and monitoring the output of an automated fault detection 

and diagnostics (AFDD) tool, which is designed to optimize the performance and lifetime of one or 

more building systems, and for performing preventive or reactive maintenance on the monitored 

systems. This includes preventive and reactive maintenance as well as access to building component 

and system data and control and monitoring system information to configure the AFDD tool. A metadata 

model enables the effective and precise configuration of the tool, the analysis of faults, and the reporting 

of diagnostics. 

AFDD tools analyse historical time series data in combination with knowledge of system capabilities, 

schedules, and sequences of operation to identify operational faults and opportunities for control 

improvement. Commercially available AFDD tools are primarily developed for monitoring HVAC BAS 

data, but similar approaches may also be applied to lighting and other systems. The tool outputs tables 

and/or graphics. 

The interconnection between each system is also required. Thus, the metadata must outline that the AHU 

delivers air to the two VAV boxes and the two thermal zones, with the bathroom fan ventilating air from 

HVAC Zone 1. Additionally, the tool must associate each fan with its respective submeter. Time series 



31                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

data must be provided for all sensors, actuators, and virtual points, indicating their unit of measure and 

expected reporting interval or interval configuration options.  

Notably, the architecture of the system's input and output can differ. For instance, a cluster of lighting 

devices could be created and fixed to cater to a specific area, but the electrical subsystems powering the 

devices could be created and fixed to operate in multiple areas or parts of them. All metered parameters 

require time series data, including their unit of measure, their anticipated reporting interval, or 

configuration options. 

Use case 3. Optimal Control of HVAC: In this scenario, an engineer installs and sets up a supervisory 

control system for the optimal operation of one or more building systems. To configure the supervisory 

control system, the engineer requires access to both the building system and component data, as well as 

control and monitoring system data. A metadata model aids in the precise and effective setup of the 

control system or software.  

Model-predictive control (MPC) strategies calculate optimal inputs by minimising an objective function 

over a given prediction horizon, given a set of constraints. MPC has yet to be implemented at scale, 

primarily due to the significant effort required to configure its models. The configuration of such models 

requires the collection of detailed information about the HVAC system, its components, and the 

relationships between these components and system performance. Time series data from sensors and 

actuators is frequently required to train the model hyperparameters and implement the optimisation 

algorithm.  

To effectively utilize the MPC model, it is essential to possess all the HVAC information highlighted in 

the AFDD use case. In addition, one must have comprehensive knowledge about the building, such as 

the location and orientation of the building, the size of the windows, the estimated properties of the 

various building elements, as well as the internal mass of the building. To accurately define the internal 

heat transfer between the building's different zones, information about the adjacency of these zones is 

necessary.  



Kirillov, A. 2023. Application development using the Brick framework. 32 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

4 KEEPING APPLICATIONS INTEROPERABLE 

Most BIM models nowadays are developed using proprietary software that is only available for the 

Windows operating system. Industry standard practices involve exchanging data via models which must 

be properly exported into a proprietary format such as Revit's ".rvt" format or an open format such as 

IFC. Following this, the model-specific files may be stored in a Common Data Environment (CDE) 

which manages access, data security and storage. That is the current reality of the BIM industry, where 

individuals must work with heavy, proprietary applications that do not interoperate.  

But this is a reality of BIM as a developing branch of the IT industry in general. Objective evaluations 

should be excluded as a matter of principle. When it comes to software products that are used by millions 

of people across the world, these software products cannot afford to be outdated, otherwise they will be 

outcompeted for customers. Big software products are typically either web-based or offer a desktop 

client, which is essentially just another version of the front-end. All the logic is executed on servers. 

Those servers also do not simply run applications and stream data to the end user. Nowadays, most 

modern applications possess a complex, decentralised architecture. It is unimaginable that a service like 

Spotify runs on one large computer. Instead, it has multiple data centres - one for the storage of billions 

of songs, another for the processing of payments from listeners and payments to artists, and a third for 

storing album covers. Therefore, this software is no longer monolithic; rather, it has become distributed. 

This methodology may prove beneficial in the development of open-source applications, as distributed 

software components are more easily modified or removed than their monolithic counterparts. 

Additionally, the market offers a variety of tools to enable the platform-independent execution of these 

decentralized components, using lightweight virtual machine versions. A distributed approach will be 

employed for the development of a case study application. 

4.1 Existing Brick Based Software 

The Brick community has already created various software tools for working with Brick on different 

levels of abstraction. These tools are available on the Brick Schema GitHub (BrickSchema). Some 

facilitate BACnet interaction, while others enable users to operate with Brick models at the HTTP 

abstraction level. However, all of them share a distributed architecture based on Docker containers. 

Developing applications based on Docker containers for further sharing and testing among users is a 

generally recommended strategy.  



33                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

4.2 Docker 

Docker is a platform that enables independent operation of software infrastructure and application 

architecture management, reducing time to deployment. Docker applications are created using 

containers, which are simplified Linux virtual machines with a 

reduced level of isolation. These containers can be run on a 

single host and interconnected with each other.  Containers can 

also be shared within a team or with anyone who is interested. 

Docker provides a set of tools that can be used to manage the 

lifecycle of Docker containers, including: 

● Develop application and supporting tools based on 

containers 

● Container becomes a unit for exchange and testing 

● After container is tested it is ready to be deployed as single container or orchestrated service in 

any environment 

Docker-based development occurs within a standardised environment and is a practical solution for 

applications intended for expansion. This process is known as continuous integration and continuous 

delivery (CI/CD). Go programming language is employed in developing Docker, which is a reliable 

multiprocessing language with a robust type system. One of Docker's features is the ability to expand. 

It utilizes Linux kernel functionality and was originally developed on top of Linux containers (LXC); 

however, it has since been updated and now offers a fully integrated environment for application 

development and deployment.  

To proceed, it is important to distinguish between docker and Virtual Machine (VM). A VM simulates 

an entire computer, including its hardware components, such as CPUs, USBs, sound cards, network 

features, etc. VM offers a higher level of isolation, but requires more resources to operate. Conversely, 

docker containers operate in isolated instances, or containers (Figure 25).      

Figure 24: Docker - Source (Docker 

Website) 



Kirillov, A. 2023. Application development using the Brick framework. 34 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 25: Docker and Virtual Machine Architecture – Source (Own)   

Docker containers possess their own file system, dependency structure, processes, and network 

capabilities, equipping the application with all the necessary resources to run seamlessly no matter where 

it is executed. As Docker container technology utilises resources of the underlying host operating system 

kernel directly, it provides a flexible and portable solution.  

As for containerizing an application the workflow could be defined as following (Figure 26): 

1) In accordance with the application's functionality, generate a Dockerfile within the application's 

folder. The Dockerfile should indicate the ports that will connect the enclosed container 

environment to the local machine. The Dockerfile shall oversee the management of Docker 

volumes, although this technology is not applicable to the case study and henceforth excluded 

from our scope. 

2) Once the Dockerfile has been created, it's important to confirm that the Docker platform is 

installed on the computer. Docker offers different applications for each platform, including Mac 

and Windows. Since Docker runs on a virtual Linux machine, If the operating system is Linux, 

there is no need to download a specific application, and everything can be managed through the 

Docker Command Line Interface (CLI). Therefore, the Docker application should be installed 

before building the image. Image is a snapshot of code that will be used as a blueprint for a 

container. Images could be exchanged between users using Docker Hub (Docker Hub, 2023).  

3) As long as an image has been built successfully, Docker can execute a container that functions 

as a fully operational application. The "run" command in Docker may include various flags to 

influence the container's behaviour such as deleting the container after it shuts down, running a 

container in interactive or detached mode, establishing volumes for cross-container 

communication, and so on.  



35                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 26: Docker Application Deploying – Source (Own) 

After an application is developed it can be run on a localhost or on any webserver like Amazon Web 

Services (AWS). Application can be self-sustainable or be a part of a big, distributed architecture.  

4.3 Mortar 

Usually, information about buildings is collected from various sources of data. Information can be 

collected from drawings, by scanning BMS, documentation, from staff that works in the building.  It 

makes implementation of control logic more complicated, and a lot of things stay untested and 

unevaluated. Even if a single building can be evaluated with big efforts by structuring all collected data, 

a developed tool can’t be scalable without structuring all other building’s data.  

Mortar (Modular Open Reproducible Testbed for Analysis and Research) is a platform enabling 

developers to build and assess portable applications for constructing analytics.  It comprises mainly of 

time-series data, collected from sensors of various buildings. Mortar can manage each brick model of 

these buildings and incorporates analytics applications, providing access to the time-series data extracted 

from models through executing queries.      

The architecture of mortar has to meet such requirements as: 

● linking historical data with it’s context  

● be able to execute queries to extract data 

● be scalable 

The primary objective for time-series data storage is to enable users to upload data produced from 

existing points and newly annotated points. Concerning the storage of brick models, Mortar also needs 

to track all modifications made to the models. Mortar's current architecture is reliant on Kubernetes-

managed clusters.  

● As a time-series database it uses BTrDB which has a fast storage and query system for scalar-

evaluated time-series data.   



Kirillov, A. 2023. Application development using the Brick framework. 36 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

● As a brick storage it is used HodDB which is RDF/SPARQL high performance database 

● Query processor is developed in “Go” programming language and interacts with BTrDB and 

HodDB that are deployed on the same cluster. 

 

Figure 27: Mortar architecture – Source (Fierro et al., 2018) 

Portable applications should be able to be moved easily between different computing environments. 

Traditional applications designed for a single building are often non-portable due to hard-coded point 

names, assumptions about building structure, and other factors. 

● Qualify. Qualify component of portable application defines data requirements for an 

application. This executes constraints: building topology and other properties, data context and 

available relations, data availability and data resolution. These constraints are executed via 

Brick queries.   

● Data Retrieval. Fetch component is actual extraction of data from time-series database 

corresponding to data streams that were defined in a previous step. The result of fetch 

component is an access to Brick queries represented as object. 

● Data Cleaning. Clean component has to executed on the result of fetch component. This 

component is performed to successfully execute analyse component 



37                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

● Application Execution. Analyse component contains all logic of application. It can perform all 

visualizations that can be a basis for decisions. There also can be optional aggregate component 

that can execute analyze component to data from all sites.  

4.4. Brick Applications in Use 

Most of the mentioned applications were developed for a particular case study. The most relevant field 

for those applications is analytics of building-related data. Some of them provide just a backend or 

minimalistic CLI interface, others are based on microservices and have complex structure.  

4.4.1 Detecting Passing Valves 

During the operation of building VAV is supposed to keep the indoor environment under control. But 

during operation of VAV some mistakes can occur. One of them is distribution losses caused by 

penetration of hot water through the valve when it was supposed to prevent it. Those losses are usually 

not accounted. It can be caused by several reasons such as: 

● age of valves and conditions of exploitation  

● fouling or blockage 

● lost communication, fault of closing mechanism or any other BAS fault 

● human factor 

 

Figure 28: Left) schematic of a variable air volume (VAV) with reheat terminal unit and right) a Brick 

data model of the VAV terminal unit – Source (Duarte Roa et al., 2022) 

Representation of VAV in both ways schematic and brick. Brick model allows retrieval of data by its 

purpose instead of using non-standardized naming conventions. Minimal data for this application to run 

are: 

● supply air temperature for AHU 

● supply air temperature for VAV 



Kirillov, A. 2023. Application development using the Brick framework. 38 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

● VAV hot water valve position 

 

The Role of Brick: The defined ontology of Brick enables predictable building representation. This 

means that the relationships between AHU, VAV, and sensors are expected to be consistent. Therefore, 

developing an application that retrieves data from a specific set of points will allow for scalability simply 

by altering the input "path". The algorithm developed can be applied to each set of data from the case 

study building specifically, as well as to any other building encoded in BRICK. 

As for the process of developing a detection application for passing valves, it can be described as data-

driven. The data needs to be extracted from the brick model in accordance with the defined pattern and 

verified. Subsequently, a methodology for fault detection needs to be established. Finally, the developed 

algorithm is applied to the data accessed from the available mortar brick data to ensure its portability. 

Results: “Algorithm categorized 5% of VAV units as having a sensor fault, 14% with a potential passing 

valve fault, and 81% with no faults detected”. “These faults resulted in an average heat rate loss of 

1,375Bth/hr with a cumulative 14,400 kBtu of energy loss or 8% of the total international reheat energy 

used by all VAV units analyzed for the time period” (Duarte Roa et al., 2022). This case study shows 

that brick can be a key to data driven approach for detection of faults. Results can be a basis for decision 

making for facility management teams.  

4.4.2 Occupant Satisfaction 

Data structured according to a standard can also be utilised to assess occupant satisfaction. As a case 

study (Mosiman et al., 2021), it has been used in a living laboratory in Boulder, Colorado, USA. The 

laboratory was fitted with different sensors and systems to regulate the indoor environment. A digital 

model was created using both Brick and Haystack approaches. The office building was supplied with a 

shared air handling unit positioned on the roof of the building. AHU had a natural gas furnace and lacked 

metering infrastructure. The schema and digital representation are illustrated in Figure 29.  

After developing the models, various methodologies were employed to establish correlations between 

space utilization and energy consumption. Consequently, a multiple linear regression was conducted 

using energy as the dependent variable and space utilization and outdoor air temperature as independent 

variables. The evidence strongly suggests a relationship between the percentage of space utilization and 

energy consumption. This finding suggests that while the precise number of occupants in a space 

remains unknown, the methodology for calculating percentage space utilization is still valuable when 

employed as an explanatory variable in a regression model for predicting energy usage. (Mosiman et 

al., 2021). 



39                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Main idea that can be extracted from this case study is that development of a model according to well 

defined ontology allows to perform different types of data analysis.   

 

 

Figure 29: Experimental setup of the commercial office space used in the experiment – Source (Cory 

Mosiman et al., 2021) 

As it was shown in case studies, brick-based workflows and softwares allow to test application of a 

larger scale, due to defined encoding of a facility and defined requirements to run a software.  



Kirillov, A. 2023. Application development using the Brick framework. 40 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

5 PROOF OF CONCEPT DEVELOPMENT 

According to Pritoni et al. (2021), ontologies should be applied in one of three fields: Energy Audits, 

Automated Fault Detection and Diagnostics, or Optimal Control of HVAC. Furthermore, the application 

should be developed to be integrated into a larger system. The application will utilize IFC in the 

EXPRESS STEP encoding format for static data, CSV files for temperature data, and an RDF graph 

encoded in Turtle for dynamic BMS-related data. Figure 30 provides a visual representation of the 

application schema. 

 

Figure 30: Schema of Proof Of Concept – Source (Own) 

The application processes various sources of data for evaluation, which can be displayed in a simple 

front-end. Given the complexity of the task, the application avoids interfering with the BMS. However, 

if there is a potential impact on HVAC equipment, the application will require safety mechanisms, 

security layers, etc. Also, the application must be interoperable and available for secondary use as part 

of a larger application. Therefore, it will rely on container technology, specifically Docker.   



41                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

5.1 Sources of Data 

5.1.1 ASHRAE Thermal Comfort Database 

The ASHRAE Thermal Comfort Database is an accessible and empirical source of data for assessing 

occupant comfort. Data is stored in a massive CSV file containing different types of data collected in 

different ways and locations.  Objective temperature measurements, indoors and out, were recorded 

alongside survey-based data. Surveys were filled out by individuals who engaged in various activities 

in locations, such as a home or office. All data was standardised and published.  

Every CSV file has named rows. In the case of the Thermal Comfort Database, rows contain descriptive 

metadata.  The database's latest version includes column headers such as Name of Contributor, 

Publications, Year, Country and City, Season, Climate Zone, Building Type, Cooling Strategy, Sample 

Size, Directory, and List of Objectives, among others (Földváry Ličina et al., 2018). The information 

can be grouped into the following categories: 

● Identifiers (Building Code, heating and/or cooling strategies, geolocation) 

● Personal Information about subject of questionnaire (weight and height, sex, age) 

● Subjective (preferences, sensation) 

● Instrumental (Indoor and outdoor temperature, humidity, air velocity) 

● Comfort Indicates (Predicted Mean Vote – PMV, Predicted Percentage Dissatisfied – PPD, 

Standard Effective Temperature – SET) 

● Available Indoor environmental controls (heaters and coolers, doors and windows) 

● Outdoor meteorological information (average temperature)  

 

After data was collected, it should pass different quality assurance procedures. Data was visualized to 

exclude anomalies. Absent data fields were filled with null values. ASHRAE Thermal Comfort Database 

stores data that was collected from 23 countries all over the world. Database also stores information 

about different types of buildings. Most of them are offices (55238). There are also classrooms (12755) 

and multifamily houses (10120), senior centres (312) and other (3421). Information about cooling 

strategy is also crucial. Database stores information about buildings with natural ventilation (38584), 

air-conditioned buildings (28544), mixed (11745), mechanically ventilated facilities (1804) and other 

(1169). 



Kirillov, A. 2023. Application development using the Brick framework. 42 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

For the proof of concept, the most relevant field is Standard Effective Temperature (SET). This 

temperature will be used as a standard for evaluation. SET temperature is distributed according to 

location, which is defined with columns “Country” and “City”, but there is no mathematical entity for 

comparison or mapping with any other source of data. Therefore, the thermal comfort database should 

be extended with columns with geographical data. For this purpose Jupyter Notebook (Jupyter 

Notebook), Pandas (Pandas), and NumPy (NumPy) Python libraries and tools were used.  

Jupyter Notebook is an open source web environment that allows to perform calculations and 

visualizations of data. Jupyter Notebook uses the Ipython kernel to perform calculations in Python 

programming language. NumPy is open source, widely used, and a fundamental python package for 

scientific array calculations. It is implemented in C programming language, therefore it works much 

faster than calculations performed in a pure python. Pandas is a python library based on NumPy that 

allows calculation based on numerical tables and time series dumps. Pandas is also open source and 

widely used in data analysis. Using described tools coordinates were inserted manually and mapped to 

all cities from the database (Figure 31). 

 

Figure 31: Insertion of geographical data into ASHRAE Database – Source (Own, Jupyter screenshot) 

5.1.2 Brick Model 

To evaluate the fundamental idea of obtaining information from various sensors, we created a Brick 

model depicting a system consisting of two rooms, two temperature sensors, two VAVs, and an AHU 

that supplies the VAVs with air. The model required a minimum of two rooms to ensure the possibility 

of using an ontology model to switch between sensors. The Brick ontology served as a reference point, 

supplying an already established set of classes to define entities and the connections between them. The 

classes shall be organised in an RDF graph and converted to Turtle format. The model was created using 



43                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

the RDFlib Python package (RDFlib, 2023), which permits the substitution of frequently used 

namespaces with Python code and serialization of the graph.  

 

In the RDFlib development process, a coherent addition of triple by triple is necessary. Initially, a 

designated space for all such triples, known as "Graph" (Figure 32), is defined. As the ontology model 

must conform to certain rules, a namespace called "BRICK" has also been created. This namespace 

serves as a link to the domain class of Brick. All entities to be used in the future will inherit from this 

domain.  

 

Figure 32: Brick model development. Defining a graph – Source (Own, Nvim screenshot) 

Also, an entity was created in the "EX" namespace to serve as a subject in triples requiring a physical 

entity. With all preparations completed, a Brick Schema entity can now be introduced. An example of a 

triple is demonstrated in Figure 33.  

 

Figure 33: Brick model development. Creating a triple – Source (Own, Nvim screenshot) 

Translated into understandable human language, the triple describes an entity as a brick building using 

Brick ontology.  The relation between the entity and the building class is "is" and is represented in 

RDF[type] predicate as "a" in Turtle encoding. Once the triple has been defined, it can be added to the 

Graph. 

After placing the first triple in Graph, it becomes possible to add a second and connect them through a 

specific relationship. The entity for the room was created and is shown in Figure 34. The “BIMA_room” 

triple establishes the entity for the room, while “BIMA_room_building” defines the relationship 

predicate between the building (Figure 33) and “BIMA_room”. According to the ontology, they can be 

connected using the “isLocatedIn” relationship. So the triple "BIMA_room_building" denotes that 

"RoomBIMA" is situated in "Building". Once these triples have been defined, they can be included in 

the Graph. 



Kirillov, A. 2023. Application development using the Brick framework. 44 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 34: Brick Model Development. Adding relationship triple – Source (Own, Nvim screenshot) 

A brick model is unable to hold sensor data as a lengthy string, necessitating encoding each sensor in an 

RDF graph with a specific triple. The subject of this triple is "hasTimeseriesReference," and its object 

is a literal containing the path and name of the corresponding timeseries database. For simplicity, the 

timeseries database will be stored locally as a CSV file, thereby providing a local copy of the timeseries 

database. In subsequent iterations, the subject can be updated to a database authorization token or any 

other access management tool.   

After all triples are added to the graph, it can be serialized into Turtle format. There are a lot of 

visualizers that can display Turtle as a schema. Visualization is illustrated in Figure 35. 

 

Figure 35: Brick model visualization – Source (Own) 

5.1.3 Data From Sensors 

Data collected from sensors should be stored in an easily accessible and clear format. Initially, all data 

was stored in an SQL database using the SQLAlchemy Python package for interactions. However, this 

was later replaced with CSV files due to their accessibility and neutrality. Additionally, the exclusion 

of SQLAlchemy from the application had a positive impact on its size.  Instead, previously employed 

libraries such as NumPy and pandas were utilised to manipulate CSV files. 

All temperature data was randomised in Python and serialized into CSV files. It is the simplest solution 

which was used to prove a concept of the application. 



45                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

5.1.4 Static Building Data 

The final aspect to define was the static data for building construction, which we achieved using the IFC 

format. However, during the proof-of-concept stage of application development, full integration of IFC 

into the parser logic was not possible. The primary objective of IFC in this version of the application is 

to provide geographical data, enabling us to establish the building's location. The IfcOpenShell 

(IfcOpenShell, 2023) Python package was used to extract this data. IfcOpenShell is an open-source tool 

kit that enables the mapping of all data from IFC to Python's language entities and the manipulation of 

that data inside Python's environment. 

After IFC file was read and all data was mapped into python entities, “IFCSITE” type was found which 

contains geographical coordinates of the building. After coordinates were converted to an appropriate 

format (Figure 36).  

 

Figure 36: Extracting geographical data from IFC – Source (Own, Nvim screenshot) 

5.2 Application’s logic 

After defining and preparing all data sources, the next step was to develop the logic of the application. 

Python programming language and a variety of external packages were used for all calculations and data 

operations. Each package was installed using the Python package manager "pip". The requirements for 

the packages were exported to a text file named "requirements.txt", which is accessible on GitHub in 

the application folder.  

5.2.1 Workflow 

The development of an application is not a linear process since some changes can have a negative 

impact. Developers may be required to take a step back. For this reason, an application development 



Kirillov, A. 2023. Application development using the Brick framework. 46 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

process must incorporate a change-tracking system. Currently, one of the most widely-used tools is Git, 

a decentralised version control system created by Linus Torvalds in 2005 specifically for the 

development of the Linux Kernel (Git website, 2023). The case study was created by an individual on a 

solitary machine, thus not all git features were utilised. 

The git development process can be broken down into four stages, within the context of a single branch. 

When git is initialised in a folder, all files are initially marked as untracked. Executing the command 

"git add <filename>" tracks a file. Upon making modifications, the file is moved to the modified stage. 

The file can then be returned to the stage by executing the command "git add <filename>". When all 

modifications are complete, the files can be committed by utilising the “git commit -m <comment>” 

command (Figure 37). If desired, they can also be pushed to a remote repository using the “git push 

<branch>” command. 

 

Figure 37: Git Workflow – Source (GitHub) 

5.2.3 Key logical steps in Python 

When defining all data storages, the following step was implementing the correct extraction of data and 

presenting decision-making data. As the Brick model is used instead of a complex tagging system, it 

needs to be queried correctly for accurate data extraction. The Brick model is RDF-based and can be 

queried using SPARQL. During the modelling process, the predicate that represents the relationship 

between the sensor and the database is "hasTimeseriesReference," according to the Brick Ontology 

Dictionary. So, the objective meaning of the SPARQL query (Figure 38) that was employed to recognize 



47                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

the correlation between the sensor and database means: " Select all subjects and objects in a model that 

have the relationship "hasTimeseriesReference". The query was implemented with Rdflib.  

 

Figure 38: Applied SPARQL query – Source (Own, Nvim screenshot) 

Output from the query execution is a list of path’s to databases – CSV files. After all paths to databases 

are known, last thing to be done was simple calculations like approximation, mapping and comparison. 

All calculations were performed using Pandas and NumPy. 

After implementing the backend, the next step was to develop a simple frontend. Initial data 

visualisations were carried out using Jupyter notebook (Jupyter Lab, 2023). However, it quickly became 

clear that for non-linear application logic and a more interactive user interface (UI) it had to be replaced 

by something else. The Streamlit framework was chosen to stay within a Python environment. Streamlit 

is an open-source Python framework that facilitates the creation and sharing of applications for data 

analysis, data science, and machine learning (Streamlit, 2023). It functions as interactive puzzles that 

embody specific backend logic. The current version of the application has limited functionality (see 

Figure 39), which may be expanded in the future. 

 

Figure 39: Application frontend 1 – Source (Own) 

This application allows to build a temperature heatmap based on data from sensors and be compared to 

optimal SET value from the ASHRAE Thermal Comfort Database. Possible heatmap is illustrated in 



Kirillov, A. 2023. Application development using the Brick framework. 48 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Figure 40. Heatmap may vary depending on randomized temperature data and location that can be set 

manually or extracted automatically from IFC. 

 

Figure 40: Heatmap – Source (Own) 

Application testing is not currently covered, hence there may be errors or blank spaces. Nevertheless, 

facility managers can use this application for simple comfort assessment. Further instructions and 

documentation are available on GitHub. 

5.3 Application deployment 

All the tools employed in the development process were open source and available for free use, just like 

this application. As it lacks commercial intent, there is no rationale for hosting it elsewhere and incurring 

costs. Consequently, the application must be run locally. To enable easier sharing and deployment, a 

Docker container was used. 

5.3.1 Application in a docker container  

Container technology was already introduced in the thesis. Purpose of the container in the scope of this 

application in particular is easier deployment and possibility of integration in into bigger application in 

the future. In other words the possibility of integration into continuous integration and continuous 

delivery (CI/CD) deployment.  

Almost any application can be converted into a "Docker" container by adding a Docker file to the 

application folder.  These containers function as a black box, and therefore the Docker file must include 

instructions for the container's logic execution and its path out of the black box. In the case of the Brick 

application, all the logic is written in Python, so a Docker image of Python 3.9 will be downloaded from 

Docker Hub. The next crucial step in the process involves downloading an application from a remote 

GitHub repository via a provided link. Once downloaded, Docker will execute the Python Package 



49                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Manager pip to install all the packages stipulated in the requirements file. Subsequently, Docker will 

specify the Local Host port number to establish a connection between the container and the PC. Finally, 

Docker provides instructions on accessing the appropriate localhost through the browser (Figure 41).      

 

Figure 41: Docker File – Source (Own, Nvim screenshot) 

 

Executing Docker file produces a Docker image, which serves as a template for a Docker container. 

Docker automatically assigns names to images and containers, but for ease of access it is preferable to 

assign names manually using the "-t" flag.   Once the Docker image is created, a container based on it 

can be started with specific flags. Firstly, to define the port as a path out of a Docker container, use the 

"-p" flag. The "--rm" flag ensures that the container is deleted after stopping. Users can also assign a 

custom name to the container instead of using the one assigned by Docker. These commands can be 

saved as a shell script and executed with a single command (see Figure 42). 

 

Figure 42: Shell Script – Source (Own, Nvim screenshot) 

Final version of application’s structure is illustrated in Figure 43. 



Kirillov, A. 2023. Application development using the Brick framework. 50 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 43: Application Structure – Source (Own) 

Docker image of application can be seen in a terminal by executing “docker images” command. This 

image also can be exchanged between users on Docker Hub as an executable application. 



51                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

6 CONCLUSION 

Modern Building Management Systems (BMS) must control numerous sensors and systems in a facility. 

All these entities require some level of abstraction to represent all the chaotic data in a structured way. 

Thus, the Brick Ontology was introduced, which contains a dictionary of rules and tags that can be used 

to encode the building into a structured RDF graph and serialise the building into a suitable format. 

Subsequently, computers can analyse facility data. To demonstrate its use, a simple model of a 2-room 

facility was created, structured in RDF and serialised in Turtle format using the Python RDFLib 

package. Furthermore, a basic application was developed to prove that this type of data can be used and 

analysed by computers. The application logic functions as follows: 

• Queried the linked data model to retrieve all sensors and database paths where their stored data 

can be traced and normalizes and parses all data into a Pandas dataset. 

• The ASHRAE thermal comfort database was parsed to obtain the SET temperature according 

to the user’s chosen location or automatic selection from IFC. 

• A comparison was made between the temperature from the sensors and database. 

• The compared data was visualized in a simple front-end based on Streamlit. 

Once the application was developed, it was encoded into a Docker image and made available for 

execution by running a shell script. Once executed, the application can be located as a Docker image on 

a hosting system or shared with users via Docker Hub. 

6.1 Main Conclusions 

Main conclusions can be pointed out as following:  

1) Open source and non-proprietary abstractions can be utilised for energy analysis application 

development.  Structured diagrams are suitable for storing heterogeneous data such as BMS 

points and HVAC systems. 

2) Open source tools such as Python and free Python libraries provide sufficient capabilities to 

develop a proof of concept for an energy analysis application and ensure further scalability. 

3) The Docker environment allows for the deployment of applications on any platform within a 

consistent environment and facilitates the sharing of applications between users. Docker is a 

suitable tool for developing portable and scalable building applications. 

6.2 Future Work and Limitations 

The application has been developed to proof of concept. The roadmap for further development could be 

as follows: 



Kirillov, A. 2023. Application development using the Brick framework. 52 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Cover current application with tests: Testing is one of the most important parts of application 

development, especially in CI/CD deployment. Therefore, for further development and integration, this 

application needs to be covered with tests to reduce the chance of bugs appearing.  

BACnet integration: The current version of the application doesn't work with BACnet or any other 

BMS networking protocol. Further application development could follow the scheme shown in Figure 

44. 

 

Figure 44: BACnet Integration – Source (Own) 

A Docker container should be added to manage the collection and standardisation of BACnet data. IP 

should be used to exchange data between containers. This demonstrates that changing input into the 

main application is a straightforward process with Docker containers. The same applies to BACnet 

simulation. A Python script, as shown in Figure 45, was used to successfully retrieve data from a BACnet 

room simulation on another computer (YouTube).  



53                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

 

Figure 45: BACnet data pulling Python script (IP addresses changed) – Source (Own, Nvim 

screenshot) 

This script, or any other more complex BACnet interaction logic, can also be stored in a Docker 

container, which will have exposure ports for inter-container communication. 

Ontology model validation: The application developed also didn't cover ontology validation. As 

mentioned previously, the latest version of Brick, 1.3, is switching from OWL to SHACL ontology, 

which will bring a model validation option. Brick model validation should be implemented to reduce a 

human factor in a model development process, as tools for machine conversion to Brick are not yet 

developed. 

Higher IFC integration: The current version of the application has a low level of IFC integration as a 

source of static data. The next step could be to automate the creation of space and equipment entities in 

Brick based on IFC data. The IFC to Brick converter is under development by the Brick research team 

and hasn't been released yet. 

Testing application on a larger scale: The Brick community has released Mortar testing software that 

includes already built Brick models of real-world facilities with a high percentage of coverage. These 

models could be used to test applications that use Brick models as a data source to ensure the scalability 

of an application. Mortar is outside the scope of application development due to technical issues. 

Data visualizations improvement: The current version of the application provides visualisation as a 

heat map, which is not accurate enough for decision making. The analysis would be improved if the 

application showed a visualisation of historical data for each room. As the data of the operational phase 

is stored in a machine-readable format, some machine learning techniques could be applied to predict 



Kirillov, A. 2023. Application development using the Brick framework. 54 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

the energy consumption of this facility, based on the consumption of similar facilities located in the 

same climate zone.  

Brick ontology extensions integration and higher usage of ASHRAE database: In some case studies, 

the Brick ontology has been extended to store occupant data. Such an extension of the ontology could 

be used to integrate data collected from occupants and stored in the ASHRAE open source thermal 

comfort database. 



55                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

REFERENCES 

Balaji B. et al. 2018,  Brick: Metadata schema for portable smart building applications, Applied 

Energy 226. Available at: https://www.sciencedirect.com/science/article/pii/S0306261918302162  

BibLus, BIM maturity levels: from stage 0  to Stage 3. Available at: 

https://biblus.accasoftware.com/en/bim-maturity-levels-from-stage-0-to-stage-3/ [Accessed 

21.08.2023] 

Brick. A uniform metadata schema for buildings. Available at: https://brickschema.org/  [Accessed 

30.08.2023] 

Brick Ontology. Available at: https://brickschema.org/ontology [Accessed on 31.08.2023] 

Building Smart. What is Open BIM? Available at: 

https://www.buildingsmart.org/about/openbim/openbim-definition/  [Accessed 23.08.2023] 

CIS - Center for Internet Security. Data Serialization. Available at:  

https://www.cisecurity.org/insights/blog/data-deserialization  [Accessed 21.08.2023] 

CMS Group. 6.02.2023. The 8 Riba Stages explained. Available at: https://cms-group.co/the-8-

riba-stages-explained/  [Accessed 25.08.2023] 

Chipkin. BACnet – How is BACnet architecture designed? Available at 

https://store.chipkin.com/articles/bacnet-how-is-the-bacnet-architecture-designed  [Accessed 

28.08.2023] 

CityJSON. A JSON-based encoding for 3D city models. Available at https://www.cityjson.org/ 

[Accessed 15.08.2023]. 

DBpedia –Global and Unified Access to knowledge graphs. Available at https://www.dbpedia.org/    

Dawson-Haggerty S. et al., BOSS: Building Operating System Services, Computer Science 

Division, University of California, Berkeley. Available at: 

https://www.researchgate.net/publication/262206891_BOSS_building_operating_system_service

s 

Docker – Develop faster. Run anywhere. Available at: https://www.docker.com/ [Accessed 

1.08.2023] 

Docker Hub – Build and Ship any application anywhere. Available at: https://hub.docker.com/  

[Accessed 1.08.2023] 

https://www.sciencedirect.com/science/article/pii/S0306261918302162
https://biblus.accasoftware.com/en/bim-maturity-levels-from-stage-0-to-stage-3/
https://brickschema.org/
https://brickschema.org/ontology
https://www.buildingsmart.org/about/openbim/openbim-definition/
https://www.cisecurity.org/insights/blog/data-deserialization
https://cms-group.co/the-8-riba-stages-explained/
https://cms-group.co/the-8-riba-stages-explained/
https://store.chipkin.com/articles/bacnet-how-is-the-bacnet-architecture-designed
https://www.cityjson.org/
https://www.dbpedia.org/
https://www.researchgate.net/publication/262206891_BOSS_building_operating_system_services
https://www.researchgate.net/publication/262206891_BOSS_building_operating_system_services
https://www.docker.com/
https://hub.docker.com/


Kirillov, A. 2023. Application development using the Brick framework. 56 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Duarte Roa C. et al. 2022, Detecting Passing Valves at Scale Across Different Buildings and 

Systems: A Brick Enabled and Mortar Tested Application, Lawrence Berkeley National 

Laboratory. Available at: https://escholarship.org/content/qt4xq5b54t/qt4xq5b54t.pdf 

Fierro G. et. Al 2019,  Beyond a House of Sticks: Formalizing Metadata Tags with Brick. Available 

at: https://dl.acm.org/doi/pdf/10.1145/3360322.3360862 

Fierro G et al. 2019, Mortar: An Open Testbed for Portable Building Analytics. Available at: 

https://dl.acm.org/doi/pdf/10.1145/3366375 

Git – free and open source distributed version control system. Availanble at: https://git-scm.com/ 

Green Building XML (gbXML) Schema. Available at: 

https://www.gbxml.org/About_GreenBuildingXML_gbXML  [Accessed 15.08.2023]. 

Haystack Blog. Quick Tutorial on the Turtle RDF Serialization. Available at: 

https://ai.ia.agh.edu.pl/_media/pl:dydaktyka:semweb:quick-tutorial-rdf-turtle.pdf 

IfcOpenShell. The open source IFC toolkit and geometry engine. Available at: 

https://ifcopenshell.org/ 

Imperva. OSI Model. Available at: https://www.imperva.com/learn/application-security/osi-

model/ 

Jupyter. Available at https://jupyter.org/   

Li Jingming et al., Research on Brick Schema Representation for Building Operation with Variable 

Refrigerant Flow Systems, Journal of Building Engineering. Available at: 

https://www.sciencedirect.com/science/article/pii/S2352710222008051 

Lia H. and J. Zhanga 2022, IFC-based Information Extraction and Analysis of HVAC Objects to 

Support Building Energy Modeling, 39th International Symposium on Automation and Robotics 

in Construction (ISARC 2022), Automation and Intelligent Construction (AutoIC) Lab, School of 

Construction Management Technology, Purdue University, West Lafayette, IN 47907, USA. 

Available at: https://www.iaarc.org/publications/fulltext/022_ISARC%202022_Paper_7.pdf 

Ličina VF., Cheung T., Zhang H. 2018, Development of the ASHRAE Global Thermal Comfort 

Database II, Building and Environment. Available at: 

https://www.sciencedirect.com/science/article/pii/S0360132318303652 

https://escholarship.org/content/qt4xq5b54t/qt4xq5b54t.pdf
https://dl.acm.org/doi/pdf/10.1145/3360322.3360862
https://dl.acm.org/doi/pdf/10.1145/3366375
https://git-scm.com/
https://www.gbxml.org/About_GreenBuildingXML_gbXML
https://ai.ia.agh.edu.pl/_media/pl:dydaktyka:semweb:quick-tutorial-rdf-turtle.pdf
https://ifcopenshell.org/
https://www.imperva.com/learn/application-security/osi-model/
https://www.imperva.com/learn/application-security/osi-model/
https://jupyter.org/
https://www.sciencedirect.com/science/article/pii/S2352710222008051
https://www.iaarc.org/publications/fulltext/022_ISARC%202022_Paper_7.pdf
https://www.sciencedirect.com/science/article/pii/S0360132318303652


57                  Kirillov, A. 2023. Application development using the Brick framework. 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Luo Na. et al. 2022, Extending the Brick Schema to Represent Metadata of Occupants. Automation 

in Construction. Available at: 

https://www.sciencedirect.com/science/article/pii/S0926580522001807 

Mavrokapnidis D. et al. 2023. A linked-data paradigm for the integration of static and dynamic 

building data in Digital Twins. Conference: BuildSys '21: The 8th ACM International Conference 

on Systems for Energy-Efficient Buildings, Cities, and Transportation. Available at: 

https://discovery.ucl.ac.uk/id/eprint/10146571/1/Balances_Workshop_pre_print.pdf  

Mosiman C., Henze G., Els H. 2021, Development and Application of Schema Based Occupant-

Centric Building Performance Metrics, Energies. Available at: 

https://www.proquest.com/openview/05b0db5df7d15e2736550e4b2b4865ea/1?pq-

origsite=gscholar&cbl=2032402 

Modbus  tools. Available at: https://www.modbustools.com/modbus.html  [Accessed 28.08.2023] 

NumPy.Thee fundamental package for scientific computing with Python. Available at: 

https://numpy.org/ 

Ontotext. What are Linked Data and Linked Open Data (LOD)? Available at: 

https://www.ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/  [Accessed 

29.08.2023] 

Open Geospatial Consortium. Available at https://www.ogc.org/  [Accessed 15.08.2023] 

Pandas Python Library. Available at: https://pandas.pydata.org/  [Accessed 10.07.2023] 

Pritoni M et al. 2021, Metadata Schemas and Ontologies for Building Energy Applications: A 

Critical Review and Use Case Analysis, Energies, Available at: https://www.mdpi.com/1996-

1073/14/7/2024 

Rdflib – pure Python package for working with RDF. Available at:  

https://rdflib.readthedocs.io/en/stable/  [Accessed 25.07.2023] 

Ref-Schema. Available at: https://github.com/gtfierro/ref-schema [Accessed 30.08.2023] 

SPIN. SHACL and OWL Compared. https://spinrdf.org/shacl-and-owl.html [Accessed 

31.08.2023] 

Setra. What is the difference between BACnet, Modbus and LonWorks? Available at: 

https://www.setra.com/blog/what-is-the-difference-between-bacnet-modbus-and-lonworks   

https://www.sciencedirect.com/science/article/pii/S0926580522001807
https://discovery.ucl.ac.uk/id/eprint/10146571/1/Balances_Workshop_pre_print.pdf
https://www.proquest.com/openview/05b0db5df7d15e2736550e4b2b4865ea/1?pq-origsite=gscholar&cbl=2032402
https://www.proquest.com/openview/05b0db5df7d15e2736550e4b2b4865ea/1?pq-origsite=gscholar&cbl=2032402
https://www.modbustools.com/modbus.html
https://numpy.org/
https://www.ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/
https://www.ogc.org/
https://pandas.pydata.org/
https://www.mdpi.com/1996-1073/14/7/2024
https://www.mdpi.com/1996-1073/14/7/2024
https://rdflib.readthedocs.io/en/stable/
https://github.com/gtfierro/ref-schema
https://spinrdf.org/shacl-and-owl.html
https://www.setra.com/blog/what-is-the-difference-between-bacnet-modbus-and-lonworks


Kirillov, A. 2023. Application development using the Brick framework. 58 

Master Th. Ljubljana, UL FGG, Second cycle master study programme Building Information Modelling – BIMA+. 

 

Streamlit – A faster way to build and share data apps. Available at: https://streamlit.io/  [Accessed 

3.06.2023] 

W3C. Tim Berners-Lee. Available at: https://www.w3.org/DesignIssues/LinkedData.html 

[Accessed 29.08.2023] 

W3C. RDF Concepts and Abstract Syntax. Available at: https://www.w3.org/TR/rdf12-concepts/     

W3C. RDF Primer – Turtle version. Available at: https://www.w3.org/2007/02/turtle/primer/  

[Accessed 29.08.2023] 

YouTube. Read data from BACnet devices over BACnet/IP using Python. Available at: 

https://www.youtube.com/watch?v=TyEXDnjBsD8  [Accessed 23.07.2023] 

 

 

https://streamlit.io/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/rdf12-concepts/
https://www.w3.org/2007/02/turtle/primer/
https://www.youtube.com/watch?v=TyEXDnjBsD8

